Convergence and Optimality of Higher-Order Adaptive Finite Element Methods for Eigenvalue Clusters

Proofs of convergence of adaptive finite element methods for the approximation of eigenvalues and eigenfunctions of linear elliptic problems have been given in a several recent papers. A key step in establishing such results for multiple and clustered eigenvalues was provided by Dai et. al. (2014), who proved convergence and optimality of AFEM for eigenvalues of multiplicity greater than one. There it was shown that a theoretical (non-computable) error estimator for which standard convergence proofs apply is equivalent to a standard computable estimator on sufficiently fine grids. Gallistl (2015) used a similar tool in order to prove that a standard adaptive FEM for controlling eigenvalue clusters for the Laplacian using continuous piecewise linear finite element spaces converges with optimal rate. When considering either higher-order finite element spaces or non-constant diffusion coefficients, however, the arguments of Dai et. al. and Gallistl do not yield equivalence of the practical and theoretical estimators for clustered eigenvalues. In this note we provide this missing key step, thus showing that standard adaptive FEM for clustered eigenvalues employing elements of arbitrary polynomial degree converge with optimal rate. We additionally establish that a key user-defined input parameter in the AFEM, the bulk marking parameter, may be chosen entirely independently of the properties of the target eigenvalue cluster. All of these results assume a fineness condition on the initial mesh in order to ensure that the nonlinearity is sufficiently resolved.

[1]  Dietmar Gallistl,et al.  An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.

[2]  Jinchao Xu,et al.  Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2008, Numerische Mathematik.

[3]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[4]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[5]  Xiaoying Dai,et al.  Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.

[6]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[7]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[8]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[9]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[10]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[11]  Pedro Morin,et al.  Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .

[12]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[13]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[14]  Andreas Veeser,et al.  Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..

[15]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[16]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[17]  Ricardo H. Nochetto,et al.  Primer of Adaptive Finite Element Methods , 2011 .

[18]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..