Identifikation geeigneter Nachweismöglichkeiten von hormonaktiven und reproduktionstoxischen Wirkungen in aquatischen Ökosystemen

ZusammenfassungHintergrund und Ziel Aus den Ergebnissen umfangreicher Forschungsprogramme, wie z. B. dem Schweizer Forschungsprojekt NFP50 „Hormonaktive Stoffe“ und deren Konsensplattformen zeigt sich ein zunehmender Handlungsbedarf hormonaktive Wirkungen in aquatischen Systemen nachweisen, bewerten und reduzieren zu können. Die EU-Strategie für endokrine Disruptoren beinhaltet als mittelfristige Maßnahmen die Beteiligung der „Organisation for Economic Co-operation and Development“ (OECD) durch die „Endocrine Disruptor Testing and Assessment Task Force“ (EDTA) und weitere Forschungsaktivitäten. Die Testverfahrensentwicklungen der OECD können erhebliche Beiträge zum Verständnis des Ausmaßes der endokrinen Disruption leisten, sofern diese auch auf Umweltproben angewendet und für Risikominderungsstrategien (z. B. Abwasserbehandlungen) eingesetzt werden. Ziel dieses Reviews ist es, eine Zusammenfassung und Bewertung von verfügbaren und in der Validierung befindlichen biologischen Testsystemen zu erstellen, mit denen Effekte hormonaktiver und reproduktionstoxischer Substanzen in Gewässern nachgewiesen werden können. Auf dieser Grundlage erfolgt eine Empfehlung einer ökotoxikologischen Testpalette, die es erlaubt, die unterschiedlichen Mechanismen der hormonaktiven Wirkungen und reproduktionsrelevanten Wirkungen zuverlässig in Umweltproben zu erfassen. Der Schwerpunkt dieser Arbeit liegt auf den Testverfahren für geschlechtshormonaktive Substanzen. Material und Methoden Ausgehend von einer Literaturrecherche und aktuellen internationalen Validierungsaktivitäten für Nachweismöglichkeiten hormonaktiver und reproduktionstoxischer Substanzen und Wirkungen wurden 15 biologische Testverfahren (5 In-vivo- und 10 In-vitro-Testverfahren) ausgewählt. Es wurden 8 Verfahren der OECD-EDTA erfasst und 3 von 5 In-vitro-Verfahren aus dem „Global Water Research Coalition“ (GWRC) Report: „Tools to detect estrogenic activity in environmental waters“ (Leusch 2008) ausgewählt. Für diese Testverfahren erfolgte eine Abfrage umfassender Kriterienprofile bei versierten Anwendern und Entwicklern, die vergleichend dargestellt und ausgewertet wurden. Ergebnisse Wichtige Kriterien bei der Auswahl der Testverfahren waren Normung/Validierung oder Verbreitung und Standardisierbarkeit der Tests sowie eine nachgewiesene Sensitivität in der Bewertung von Umweltproben. Bei den In-vitro-Tests erfüllen dies unserer Meinung nach bestimmte YES/YAS-Systeme (Yeast Estrogen/Androgen Screen Assay) und die ER/AR-Calux-Verfahren (Estrogen/Androgen Receptor). Sollte deren Anwendung durch starke zytotoxische Effekte in Umweltproben behindert werden, kann z. B. ein molekularer Rezeptorbindungsassay, wie der ELRA, Rezeptorbindungspotenziale nachweisen. Weitere molekulare Rezeptorbindungsassays sind derzeitig in der Validierung der OECD. Ebenfalls von der OECD für Einzelsubstanzen validiert, kann der H295R Steroidgenesis Assay Modulationen der Steroidgenese, und eventuell sogar aromatasemodulierende Effekte nachweisen. Seine Anwendbarkeit auf Umweltproben wird derzeitig getestet. Für die In-vivo-Stufe der modularen Testplattform wurden verschiedene Fischtests (z. B. der Fish Screening Assay und der Fischeitest) bewertet. Um Einflüsse auf das thyroidale Hormonsystem nachzuweisen ist der Amphibian Metamorphosis Assay (in der Abfrage unter XEMA, Xenopus Metamorphosis Assay) am weitesten validiert und wird bald als offizielle OECD-Richtlinie erscheinen. Da es sich auch hier um einen Vertebratentest handelt und internationale Bestrebungen bestehen Vertebratentests zu vermeiden, erfolgte nur eine optionale Empfehlung. Reproduktionstoxische Wirkungen können z. B. sehr sensitiv im Schneckenreproduktionstest mit Potamopyrgus antipodarum nachgewiesen werden. Dieser reagiert auch auf viele Substanzen, die in Vertebraten eine endokrine Disruption verursachen. Eine Validierung erfolgt derzeitig durch die OECD. Eine Eignung der in der modularen Testpalette vorgeschlagenen Verfahren für Umweltprobenbewertungen wurde angegeben und kann durch mehrere Literaturquellen belegt werden. Diskussion Es wurde eine anwendungsorientierte modulare Testpalette mit verschiedenen Testverfahren vorgeschlagen, die möglichst effektiv und vielseitig die Mechanismen der endokrinen Disruption und die Reproduktionstoxizität nachzuweisen vermögen und sich dabei in ihren Stärken und unterschiedlichen Arbeitsbereichen ergänzen. Es können fortpflanzungsrelevante Wirkungen an Invertebraten, Amphibien und Fischen und die wirkmechanistischen Ansätze der östrogenen und androgenen Rezeptorbindung, der Steroidgenese, eventuell sogar der Aromatasemodulation erfasst werden. Neuere Forschungsergebnisse, wie z. B. der Forschungsbericht zur Gewässerrelevanz endokriner Stoffe und Arzneimittel (Moltmann et al. 2007), konnten anhand aquatisch relevanter Schadstoffe mit In-vivo-Tests nachweisen, dass endokrine Endpunkte (bei 31 von 71 untersuchten Stoffen) empfindlicher sein können als allgemeine ökotoxikologische Endpunkte (z. B. Mortalität, Wachstum usw.). Daher wird empfohlen endokrine Effekte nicht isoliert zu betrachten, sondern parallel mit allgemeintoxischen und fortpflanzungsrelevanten Wirkungen in ökotoxikologischen Biotestpaletten integrativ zu erfassen. Schlussfolgerungen Durch die Kombination einer Literaturrecherche und der gezielten Abfrage von Informationen zu den Testverfahren konnte eine umfassende, aber auch detaillierte Übersicht zum derzeitigen Stand der Wissenschaft und Technik gegeben werden. Dabei wurden ökotoxikologische und regulative Aspekte der Testverfahren gleichermaßen berücksichtigt und deren Praktikabilität für ein Umweltmonitoring in aquatischen Systemen bewertet. Bei der Vielfältigkeit der endokrinen Wirkmechanismen bedarf es einer modularen Kombination von In-vivo- und In-vitro-Verfahren in einer Testpalette, um auch die fließenden Übergänge von hormonaktiven Wirkungen bis hin zu einer manifestierten endokrinen Disruption erfassen und differenzieren zu können. Empfehlungen und Perspektiven Die vorgestellte Testpalette erlaubt einen umfassenden Schutz vor hormonaktiven und reproduktionsrelevanten Effekten, wobei eine Anpassung an die Interessen und Zielsetzungen der Anwender erfolgen kann. Es werden sowohl die regulativen und ökotoxikologischen Anforderungen an Testsysteme als auch die aktuellen Entwicklungen in der EU und der OECD mit berücksichtigt. Eine weiterführende Normung dieser Verfahren für den regulativen Einsatz in der Umweltüberwachung und für Risikominderungsstrategien ist zu empfehlen. Das modulare System erlaubt es, einen anwendungsorientierten Austausch der Testmodule nach dem sich kontinuierlich entwickelnden Stand der Technik ohne Neuentwicklungen auszuschließen.AbstractBackground and objectives There is an urgent need to detect, assess, and reduce effects of hormonally active compounds and endocrine disrupters in aquatic systems, as reflected in national research programs like the Swiss NRP 50 “Endocrine Disruptors” and its consensus platforms. As a medium-term measure, the EU strategy on endocrine disruptors (SEC(2007)1635) uses the Endocrine Disruptor Testing and Assessment (EDTA) Task Force of the Organisation for Economic Co-operation and Development (OECD) along with other research activities. In particular the test methods of the OECD that are currently in validation or already validated may contribute to a better understanding of the extent of endocrine disruption, in particular if they are applied on environmental samples and in the context of risk-assessment strategies, for instance in waste water treatment. This article aims to give an overview and an evaluation on available and validated biological test systems for the detection of endocrine disruptive and reproductive effects in aquatic systems. Based on this a recommendation for a modular ecotoxicological test platform is given. The study focuses on test methods for sex hormone active substances. Material and methods On the basis of an extensive literature search and ongoing international validation efforts by the OECD for methods to detect endocrine disruptive effects, 15 biological test methods (5 in vivo and 10 in vitro) were selected. Comprising, for example, of eight OECD methods and three out of five in-vitro methods mentioned in the Global Water Research Coalition (GWRC) report “Tools to detect estrogenic activity in environmental waters” (Leusch 2008). Experienced users and developers were then asked to rate the test according to given relevant criteria. The resulting criteria profiles were compiled, compared, and evaluated. Results The methods were selected on the basis of validation status, distribution, their suitability for standardisation, and their proven sensitivity for environmental samples. We assumed that specific YES/YAS-procedures and the ER/AR Calux systems achieve the mentioned criteria. In the case that strong cytotoxicity of environmental samples affects the applicability of cellular reporter gene assays, alternatively a molecular receptor binding assay (e. g. ELRA) could be used. Additional molecular receptor binding assays are currently in validation by the OECD. Modulating effects on steroidgenesis and probably even on aromatase activity can be detected by the OECD validated H295R Steroidgenesis Assay. Its applicability for environmental samples is currently tested. As in-vivo methods different fish assays (e. g. Fish Screening Assay and the Zebrafish Embryo Test) were evaluated. For the detection of effects on the thyroid-associated hormone system the Amphibian Metamorphosis Assay (XEMA, for Xenopus Metamorphosis Assay) will soon be available as an OECD-Guideline. Because of trends in the international community to avoid tests with vertebrates in the future, only an optional recommendation was given for such tests. Reproduction toxicity, on the other hand, can be sensitively tested by the tests using the gastropod Potamopyrgus antipodarum, which, as invertebrate tests, do not re

[1]  K. Fent,et al.  Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout Oncorhynchus mykiss. , 2002, Aquatic toxicology.

[2]  J. Oehlmann,et al.  Endocrine disruption in prosobranch molluscs: evidence and ecological relevance , 2007, Ecotoxicology.

[3]  Y. Nishi,et al.  Printed in U.S.A. Copyright © 2001 by The Endocrine Society Establishment and Characterization of a Steroidogenic Human Granulosa-Like Tumor Cell Line, KGN, That Expresses Functional Follicle-Stimulating Hormone Receptor , 2000 .

[4]  B. Eggins Analytical Techniques in the Sciences , 2002 .

[5]  F. Gagné,et al.  Altered exoskeleton composition and vitellogenesis in the crustacean Gammarus sp. collected at polluted sites in the Saguenay Fjord, Quebec, Canada. , 2005, Environmental research.

[6]  H. Shiraishi,et al.  Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. , 2006, Biosensors & bioelectronics.

[7]  C Sonnenschein,et al.  The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. , 1995, Environmental health perspectives.

[8]  B. Escher,et al.  Estrogens in Swiss rivers and effluents: Sampling matters , 2008 .

[9]  D. Baird,et al.  Experimental Designs to Assess Endocrine Disrupting Effects in Invertebrates A Review , 2004, Ecotoxicology.

[10]  J. Sumpter,et al.  Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. , 1995, Environmental health perspectives.

[11]  G. Proll Biosensorsystem für vollständig automatisierte ultra-sensitive Multianalyt-Immunoassays , 2005 .

[12]  D. Morritt,et al.  Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works , 2001, Environmental toxicology and chemistry.

[13]  K. Kinnberg Evaluation of in vitro assays for determination of estrogenic activity in the environment , 2003 .

[14]  Werner Wosniok,et al.  Acute toxicity of 353-nonylphenol and its metabolites for zebrafish embryos , 2009, Environmental science and pollution research international.

[15]  P. Kunz,et al.  Gammarus spp. in aquatic ecotoxicology and water quality assessment: toward integrated multilevel tests. , 2010, Reviews of environmental contamination and toxicology.

[16]  Beate I Escher,et al.  Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids , 2004, Environmental toxicology and chemistry.

[17]  Bertold Hock,et al.  Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens , 1999 .

[18]  Helmut Segner,et al.  Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. , 2006, Aquatic toxicology.

[19]  F. Leusch Tools to detect estrogenic activity in environmental waters , 2008 .

[20]  J. Oehlmann,et al.  Prosobranch snails as test organisms for the assessment of endocrine active chemicals––an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgus antipodarum , 2007, Ecotoxicology.

[21]  Kevin V Thomas,et al.  An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries , 2002, Environmental toxicology and chemistry.

[22]  H. Fahlenkamp,et al.  Risk assessment for organic trace compounds in wastewater: comparison of conventional and advanced treatment. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[23]  Thomas Braunbeck,et al.  Combined in situ and in vitro assessment of the estrogenic activity of sewage and surface water samples. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[24]  Nancy D. Denslow,et al.  Overview of a workshop on screening methods for detecting potential (anti‐) estrogenic/androgenic chemicals in wildlife , 1998 .

[25]  L. Gray,et al.  High throughput adjustable 96-well plate assay for androgen receptor binding: a practical approach for EDC screening using the chimpanzee AR. , 2008, Toxicology letters.

[26]  H. Leffers,et al.  Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. , 1999 .

[27]  Grantley D Charles,et al.  In vitro models in endocrine disruptor screening. , 2004, ILAR journal.

[28]  A Wenzel,et al.  Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. , 2003, Ecotoxicology and environmental safety.

[29]  Dong-Kyoo Kim,et al.  Environmental estrogenic effects and gonadal development in wild goldfish (Carassius auratus) , 2009, Environmental Monitoring & Assessment.

[30]  H. Köhler,et al.  Bisphenol A in Artificial Indoor Streams: II. Stress Response and Gonad Histology in Gammarus fossarum (Amphipoda) , 2006, Ecotoxicology.

[31]  Carlos Sonnenschein,et al.  An updated review of environmental estrogen and androgen mimics and antagonists , 1998, The Journal of Steroid Biochemistry and Molecular Biology.

[32]  J. Lazorchak,et al.  17α‐ethynylestradiol‐induced vitellogenin gene transcription quantified in livers of adult males, larvae, and gills of fathead minnows (Pimephales promelas) , 2002 .

[33]  Anne Marie Vinggaard,et al.  Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. , 2002, Toxicology and applied pharmacology.

[34]  W. Kloas Amphibians as a model for the study of endocrine disruptors. , 2002, International review of cytology.

[35]  I. Katsiadaki,et al.  Detection of environmental androgens: A novel method based on enzyme‐linked immunosorbent assay of spiggin, the stickleback (Gasterosteus aculeatus) glue protein , 2002, Environmental toxicology and chemistry.

[36]  M. Karp,et al.  A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. , 2005, Biosensors & bioelectronics.

[37]  T. Croley,et al.  Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes) , 2001, Environmental toxicology and chemistry.

[38]  J. Nielsen,et al.  Critical parameters in the MCF-7 cell proliferation bioassay (E-Screen) , 2002, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.

[39]  John P. Sumpter,et al.  Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes , 1993 .

[40]  Patricia Burkhardt-Holm,et al.  Estrogenicity patterns in the Swiss midland river Lützelmurg in relation to treated domestic sewage effluent discharges and hydrology , 2006, Environmental toxicology and chemistry.

[41]  Thomas Backhaus,et al.  Toxic masking and synergistic modulation of the estrogenic activity of chemical mixtures in a yeast estrogen screen (YES) , 2009, Environmental science and pollution research international.

[42]  A. Gerhardt Biomonitoring of polluted water. , 1999 .

[43]  Christoph van Ballegooy Endokrine Wirkungen (anti)androgener Substanzen bei der Ploetze (Rutilus rutilus) , 2008 .

[44]  Li Liu,et al.  Development and validation of a 2,000‐gene microarray for the fathead minnow (Pimephales promelas) , 2007, Environmental toxicology and chemistry.

[45]  H. Andersen,et al.  Development of copepod nauplii to copepodites—a parameter for chronic toxicity including endocrine disruption , 2001, Environmental toxicology and chemistry.

[46]  Edwin J. Routledge,et al.  Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen , 1996 .

[47]  C. Tyler,et al.  Androgenic and estrogenic effects of the synthetic androgen 17alpha-methyltestosterone on sexual development and reproductive performance in the fathead minnow (Pimephales promelas) determined using the gonadal recrudescence assay. , 2004, Aquatic toxicology.

[48]  Helmut Segner,et al.  Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. , 2008, General and comparative endocrinology.

[49]  C. Schäfers,et al.  Zur Entwicklung einer Prüfstrategie auf sexual-endokrine Wirksamkeit einer chemischen Substanz bei Fischen , 2008 .

[50]  T. Zacharewski In Vitro Bioassays for Assessing Estrogenic Substances , 1997 .

[51]  J. Oehlmann,et al.  Endocrine disruption in invertebrates , 2003 .

[52]  C. A. Harris,et al.  Development of a Reproductive Performance Test for Endocrine Disrupting Chemicals Using Pair-Breeding Fathead Minnows (Pimephales promelas) , 2000 .

[53]  Christopher J Martyniuk,et al.  Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol. , 2007, Aquatic toxicology.

[54]  L Earl Gray,et al.  Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[55]  F. Pakdel,et al.  Differential functional activities of rainbow trout and human estrogen receptors expressed in the yeast Saccharomyces cerevisiae. , 1995, European journal of biochemistry.

[56]  P. Kunz,et al.  Estrogenic activity of ternary UV filter mixtures in fish (Pimephales promelas) - an analysis with nonlinear isobolograms. , 2009, Toxicology and applied pharmacology.

[57]  J. Furr,et al.  Xenoendocrine disrupters-tiered screening and testing: filling key data gaps. , 2002, Toxicology.

[58]  Edwin J. Routledge,et al.  Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening , 1998 .

[59]  P. Kunz,et al.  The ultraviolet filter 3-benzylidene camphor adversely affects reproduction in fathead minnow (Pimephales promelas). , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[60]  B. Eggins Chemical Sensors and Biosensors , 2002 .

[61]  G. Ankley,et al.  Screening and Testing for Endocrine Disruption in Fish—Biomarkers As “Signposts,” Not “Traffic Lights,” in Risk Assessment , 2005, Environmental health perspectives.

[62]  Terri Damstra,et al.  Global assessment of the state-of-the-science of endocrine disruptors , 2002 .

[63]  M. Depledge,et al.  The role of biomarkers in environmental assessment (2). Invertebrates , 1994, Ecotoxicology.

[64]  Paul D. Jones,et al.  Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay , 2008, Environmental science and pollution research international.

[65]  R. Verheyen,et al.  Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol , 2004 .

[66]  L. Folmar,et al.  A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. , 2002, Aquatic toxicology.

[67]  D. Schlenk,et al.  Evaluation of Wetland and Tertiary Wastewater Treatments for Estrogenicity Using In Vivo and In Vitro Assays , 2004, Archives of environmental contamination and toxicology.

[68]  J. Meerman,et al.  Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays , 2002, Environmental toxicology and chemistry.

[69]  M. Carlquist,et al.  An advanced biosensor for the prediction of estrogenic effects of endocrine-disrupting chemicals on the estrogen receptor alpha , 2009, Analytical and bioanalytical chemistry.

[70]  P. Kunz,et al.  Estrogenic activity of UV filter mixtures. , 2006, Toxicology and applied pharmacology.

[71]  Max Dobler,et al.  VirtualToxLab – in silico Prediction of the Endocrine-Disrupting Potential of Drugs and Chemicals , 2008 .

[72]  L. Tremblay,et al.  Development of methods for extraction and in vitro quantification of estrogenic and androgenic activity of wastewater samples. , 2006, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[73]  G. Ankley,et al.  Description and evaluation of a short‐term reproduction test with the fathead minnow (Pimephales promelas) , 2001, Environmental toxicology and chemistry.

[74]  P. Kunz,et al.  Effects of the UV filter benzophenone-2 on reproduction in fish. , 2007, Toxicology and applied pharmacology.

[75]  H. Galicia,et al.  Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[76]  Bertold Hock,et al.  VITELLOGENIN : A BIOMARKER FOR ENDOCRINE DISRUPTORS , 1998 .

[77]  M. Sepaniak,et al.  Development of a nanomechanical biosensor for analysis of endocrine disrupting chemicals. , 2007, Lab on a Chip.

[78]  Martin Wagner,et al.  Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus. , 2008, Environmental pollution.

[79]  B. Preston,et al.  Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors , 2000 .

[80]  Erin M. Snyder,et al.  Effects of waterborne exposure to 4-nonylphenol and nonylphenol ethoxylate on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). , 1999, Environmental research.

[81]  Edwin J. Routledge,et al.  Identification of Estrogenic Chemicals in STW Effluent. 2. In Vivo Responses in Trout and Roach , 1998 .

[82]  M Castillo,et al.  Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay , 2001, Environmental toxicology and chemistry.

[83]  E. Baatrup,et al.  Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy Poecilia reticulata. , 2001, Environmental health perspectives.

[84]  R. Länge,et al.  Kriterien zur Bewertung der Qualität und Validität von toxikologischen und ökotoxikologischen Studien für regulatorische Fragestellungen , 2006 .

[85]  W. Manz,et al.  Integral assessment of estrogenic potentials in sediment-associated samples , 2009, Environmental science and pollution research international.

[86]  Peter Matthiessen,et al.  Is Endocrine Disruption a Significant Ecological Issue? , 2000 .

[87]  J. Metzger,et al.  Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). , 2004, Chemosphere.

[88]  Charles R Tyler,et al.  An environmental estrogen alters reproductive hierarchies, disrupting sexual selection in group-spawning fish. , 2008, Environmental science & technology.

[89]  C. Tyler,et al.  An in vivo testing system for endocrine disruptors in fish early life stages using induction of vitellogenin , 1999 .

[90]  R. Einspanier,et al.  Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. , 1999, The Science of the total environment.

[91]  Henner Hollert,et al.  The OECD Validation Program of the H295R Steroidogenesis Assay for the Identification of In Vitro Inhibitors and Inducers of Testosterone and Estradiol Production. Phase 2: Inter-Laboratory Pre-Validation Studies (8 pp) , 2007, Environmental science and pollution research international.

[92]  M. Junghans,et al.  Testing estrogenicity of known and novel (xeno‐)estrogens in the MolDarT using developing zebrafish (Danio rerio) , 2007, Environmental toxicology.

[93]  S. Teh,et al.  Global gene expression profiling of androgen disruption in Qurt strain medaka. , 2008, Environmental science & technology.

[94]  K. Fent,et al.  Development of a fish reporter gene system for the assessment of estrogenic compounds and sewage treatment plant effluents , 2002, Environmental toxicology and chemistry.

[95]  Bart Van der Burg,et al.  Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. , 2008, Environmental science & technology.

[96]  Juliette Legler,et al.  Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. , 2002, The Science of the total environment.

[97]  T. Iguchi,et al.  Effects of estrogenic hormones on early development of Xenopus laevis. , 1997, The Journal of experimental zoology.

[98]  K. Carroll,et al.  Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17α‐ethinylestradiol , 2002, Environmental toxicology and chemistry.

[99]  J. Westendorf,et al.  Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. , 2001, Toxicology.

[100]  K. O. Kusk,et al.  Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods , 2007, Ecotoxicology.

[101]  M. Ikonomou,et al.  The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. , 2007, The Science of the total environment.

[102]  Werner Brack,et al.  Endocrine Disruption of Water and Sediment Extracts in a Non-Radioactive Dot Blot/RNAse Protection-Assay Using Isolated Hepatocytes of Rainbow Trout (14 pp).Deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them , 2005, Environmental science and pollution research international.

[103]  I. Kang,et al.  Effect of 17β-estradiol on the reproduction of Japanese medaka (Oryzias latipes) , 2002 .