iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging

[1]  Rajan P Kulkarni,et al.  Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing , 2014, Cell.

[2]  Ali Ertürk,et al.  Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO , 2014, Journal of visualized experiments : JoVE.

[3]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[4]  A. Fryer,et al.  Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways. , 2014, American journal of respiratory cell and molecular biology.

[5]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[6]  H. Okamoto,et al.  Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization , 2013, The Journal of cell biology.

[7]  Chenghua Gu,et al.  Establishment of Neurovascular Congruency in the Mouse Whisker System by an Independent Patterning Mechanism , 2013, Neuron.

[8]  D. Ginty,et al.  The Sensory Neurons of Touch , 2013, Neuron.

[9]  Takeshi Imai,et al.  SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction , 2013, Nature Neuroscience.

[10]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[11]  W. Guido,et al.  ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue , 2013, Development.

[12]  T. Pawson,et al.  Yap- and Cdc42-Dependent Nephrogenesis and Morphogenesis during Mouse Kidney Development , 2013, PLoS genetics.

[13]  J. Sanes,et al.  Improved tools for the Brainbow toolbox. , 2013, Nature methods.

[14]  D. O'Leary,et al.  A Caspase Cascade Regulating Developmental Axon Degeneration , 2012, The Journal of Neuroscience.

[15]  Frank Bradke,et al.  Three-dimensional imaging of solvent-cleared organs using 3DISCO , 2012, Nature Protocols.

[16]  I. Sugihara,et al.  FoxP2 expression in the cerebellum and inferior olive: Development of the transverse stripe‐shaped expression pattern in the mouse cerebellar cortex , 2012, The Journal of comparative neurology.

[17]  Frank Bradke,et al.  Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury , 2011, Nature Medicine.

[18]  Wenqin Luo,et al.  The Functional Organization of Cutaneous Low-Threshold Mechanosensory Neurons , 2011, Cell.

[19]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[20]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[21]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[22]  Gabriel Kreiman,et al.  Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate Nucleus Reveals Novel Roles for Zic4 and Foxp2 in Visual and Auditory Pathway Development , 2009, The Journal of Neuroscience.

[23]  Johannes Schwarz,et al.  A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice , 2009, Cell.

[24]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[25]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[26]  R. Oppenheim,et al.  Neuromuscular Development after the Prevention of Naturally Occurring Neuronal Death by Bax Deletion , 2003, The Journal of Neuroscience.

[27]  Christopher A Walsh,et al.  Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain , 2003, The Journal of comparative neurology.

[28]  M. Feller,et al.  Retinogeniculate Axons Undergo Eye-Specific Segregation in the Absence of Eye-Specific Layers , 2002, The Journal of Neuroscience.

[29]  A. Davies,et al.  Populations of NGF-dependent neurones differ in their requirement for BAX to undergo apoptosis in the absence of NGF/TrkA signalling in vivo. , 2001, Development.

[30]  S. Korsmeyer,et al.  The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. , 2000, Molecular cell.

[31]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[32]  S. Korsmeyer,et al.  Widespread Elimination of Naturally Occurring Neuronal Death inBax-Deficient Mice , 1998, The Journal of Neuroscience.

[33]  Hao Wang,et al.  Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System , 1996, Cell.

[34]  S. Korsmeyer,et al.  BAX Is Required for Neuronal Death after Trophic Factor Deprivation and during Development , 1996, Neuron.

[35]  J. Guénet,et al.  Cell Counts of Purkinje and Inferior Olivary Neurons in the ‘Hyperspiny Purkinje Cells’ Mutant Mouse , 1992, The European journal of neuroscience.

[36]  S. Hunt,et al.  Induction of c-fos-like protein in spinal cord neurons following sensory stimulation , 1987, Nature.

[37]  Philip Goelet,et al.  The long and the short of long–term memory—a molecular framework , 1986, Nature.

[38]  Werner Spalteholz,et al.  Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen : nebst Anhang : Über Knochenfärbung , 1914 .