Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs

[1]  R. Huber,et al.  Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria , 1992 .

[2]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[3]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Huber,et al.  Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount , 1990, Nature.

[5]  B. Jørgensen,et al.  Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California) , 1990 .

[6]  K. Stetter,et al.  Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria , 1987, Science.

[7]  B. N. Herbert,et al.  The effect of pressure and temperature on sulphate‐reducing bacteria and the action of biocides in oilfield water injection systems , 1986 .

[8]  W. C. Wong,et al.  Sclerotium cepivorum Berk. in onion (Allium cepa L.) crops: isolation and characterization of bacteria antagonistic to the fungus in Queensland , 1986 .

[9]  E. Stackebrandt,et al.  Pyrodictium gen. nov., a New Genus of Submarine Disc-Shaped Sulphur Reducing Archaebacteria Growing Optimally at 105°C. , 1983, Systematic and applied microbiology.

[10]  K. Stetter Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C , 1982, Nature.

[11]  Gordon A. McFeters,et al.  Sulfate‐reducing and methanogenic bacteria from deep aquifers in montana , 1981 .

[12]  D. Wadman,et al.  Joint Geologic/Engineering Analysis of the Sadlerochit Reservoir, Prudhoe Bay Field , 1979 .

[13]  R. Y. Morita Chapter XI Application of Hydrostatic Pressure to Microbial Cultures , 1970 .