An Appraisal of Methods for the Analysis of Longitudinal Ordinal Response Data with Random Dropout Using a Nonhomogeneous Markov Model

There are many methods for analyzing longitudinal ordinal response data with random dropout. These include maximum likelihood (ML), weighted estimating equations (WEEs), and multiple imputations (MI). In this article, using a Markov model where the effect of previous response on the current response is investigated as an ordinal variable, the likelihood is partitioned to simplify the use of existing software. Simulated data, generated to present a three-period longitudinal study with random dropout, are used to compare performance of ML, WEE, and MI methods in terms of standardized bias and coverage probabilities. These estimation methods are applied to a real medical data set.

[1]  J. Hopper,et al.  A random walk model for evaluating clinical trials involving serial observations. , 1988, Statistics in medicine.

[2]  P. Billingsley,et al.  Statistical Methods in Markov Chains , 1961 .

[3]  Stephanie T. Lanza,et al.  Latent transition analysis with covariates: pubertal timing and substance use behaviours in adolescent females , 2005, Statistics in medicine.

[4]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[5]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[6]  W. Hines,et al.  An appraisal of methods for the analysis of longitudinal categorical data with MAR drop‐outs , 2005, Statistics in medicine.

[7]  Michael J Daniels,et al.  A class of markov models for longitudinal ordinal data. , 2007, Biometrics.

[8]  Adhir K Basu,et al.  Introduction to Stochastic Process , 2002 .

[9]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[10]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[11]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[12]  P. Diggle Analysis of Longitudinal Data , 1995 .

[13]  Edward C. Chao,et al.  Generalized Estimating Equations , 2003, Technometrics.

[14]  Geert Molenberghs,et al.  Linear Mixed Models in Practice , 1997 .

[15]  G Molenberghs,et al.  An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random. , 1994, Biometrics.

[16]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[17]  Leo A. Goodman,et al.  Association Models and Canonical Correlation in the Analysis of Cross-Classifications Having Ordered Categories , 1981 .

[18]  G. Tutz Modelling of repeated ordered measurements by isotonic sequential regression , 2005 .

[19]  Tulay Koru-Sengul,et al.  A residuals-based transition model for longitudinal analysis with estimation in the presence of missing data. , 2007, Statistics in medicine.

[20]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[21]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[22]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[23]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[24]  J M Neuhaus,et al.  Statistical methods for longitudinal and clustered designs with binary responses , 1992, Statistical methods in medical research.

[25]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[26]  A. Garber,et al.  A discrete-time model of the acquisition of antibiotic-resistant infections in hospitalized patients. , 1989, Biometrics.

[27]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[28]  Roberto Pastor-Barriuso,et al.  Transition models for change‐point estimation in logistic regression , 2003, Statistics in medicine.

[29]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[30]  J. R. Landis,et al.  A log-linear model for ordinal data to characterize differential change among treatments. , 1989, Statistics in medicine.

[31]  Hakan Demirtas Practical Advice on How to Impute Continuous Data When the Ultimate Interest Centers on Dichotomized Outcomes Through Pre-Specified Thresholds , 2007, Commun. Stat. Simul. Comput..

[32]  K Kim,et al.  A bivariate cumulative probit regression model for ordered categorical data. , 1995, Statistics in medicine.

[33]  D. Hedeker,et al.  Bias reduction in effectiveness analyses of longitudinal ordinal doses with a mixed‐effects propensity adjustment , 2007, Statistics in medicine.

[34]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[35]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[36]  M. Bartlett The frequency goodness of fit test for probability chains , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  L. V. Rubinstein,et al.  Markov models for covariate dependence of binary sequences. , 1985, Biometrics.

[38]  Jeroen K. Vermunt,et al.  Modeling Joint and Marginal Distributions in the Analysis of Categorical Panel Data , 2001 .

[39]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[40]  G. Tutz,et al.  Random effects in ordinal regression models , 1996 .

[41]  Geert Molenberghs,et al.  A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data , 2001 .

[42]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[43]  D. Berridge,et al.  Fitting a random effects model to ordinal recurrent events using existing software , 1996 .

[44]  Robert W. Mee,et al.  A mixed-model procedure for analyzing ordered categorical data , 1984 .

[45]  T. Raghunathan,et al.  A Bayesian Approach for Clustered Longitudinal Ordinal Outcome With Nonignorable Missing Data , 2006 .

[46]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[47]  M. Kenward,et al.  The analysis of longitudinal ordinal data with nonrandom drop-out , 1997 .

[48]  Paul G. Hoel,et al.  A TEST FOR MARKOFF CHAINS , 1954 .

[49]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[50]  J. R. Landis,et al.  Population-averaged and cluster-specific models for clustered ordinal response data. , 1996, Statistics in medicine.

[51]  P. McCullagh Analysis of Ordinal Categorical Data , 1985 .