The RIT binary black hole simulations catalog

The RIT numerical relativity group is releasing a public catalog of black-hole-binary waveforms. The initial release of the catalog consists of 126 recent simulations that include precessing and non precessing systems with mass ratios $q=m_1/m_2$ in the range $1/6\leq q\leq1$. The catalog contains information about the initial data of the simulation, the waveforms extrapolated to infinity, as well as information about the peak luminosity and final remnant black hole properties. These waveforms can be used to independently interpret gravitational wave signals from laser interferometric detectors and

[1]  Marcus Ansorg,et al.  Single-domain spectral method for black hole puncture data , 2004 .

[2]  Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.

[3]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[4]  Exploring the outer limits of numerical relativity , 2013, 1304.3937.

[5]  Spin Flips and Precession in Black-Hole-Binary Mergers , 2006, gr-qc/0612076.

[6]  David Merritt,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[7]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[8]  D. Shoemaker,et al.  Superkicks in hyperbolic encounters of binary black holes. , 2008, Physical review letters.

[9]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[10]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[11]  Black hole binary remnant mass and spin: A new phenomenological formula , 2013, 1312.5775.

[12]  Andrea Taracchini,et al.  Reducing orbital eccentricity of precessing black-hole binaries , 2010, 1012.1549.

[13]  Y. Zlochower,et al.  Modeling the remnant mass, spin, and recoil from unequal-mass, precessing black-hole binaries: The Intermediate Mass Ratio Regime , 2015, 1503.07536.

[14]  Y. Zlochower,et al.  Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. , 2011, Physical review letters.

[15]  Mario Campanelli,et al.  Second order gauge invariant gravitational perturbations of a Kerr black hole , 1999 .

[16]  Y. Wang,et al.  Effects of waveform model systematics on the interpretation of GW150914 , 2017 .

[17]  Andrea Taracchini,et al.  Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity , 2016, 1607.05661.

[18]  Michael Boyle,et al.  The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries , 2012, 1201.5319.

[19]  Lawrence E. Kidder,et al.  Modeling the source of GW150914 with targeted numerical-relativity simulations , 2016, 1607.05377.

[20]  Ulrich Sperhake,et al.  The numerical relativity breakthrough for binary black holes , 2014, 1411.3997.

[21]  Robert Owen Degeneracy measures for the algebraic classification of numerical spacetimes , 2010, 1004.3768.

[22]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[23]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[24]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[25]  N. Demos,et al.  Nearly extremal apparent horizons in simulations of merging black holes , 2014, 1411.7297.

[26]  José A. González,et al.  Exploring black hole superkicks , 2007, 0707.0135.

[27]  José A. González,et al.  Where post-Newtonian and numerical-relativity waveforms meet , 2007, 0706.1305.

[28]  Cosmology,et al.  Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame , 2013, 1304.3176.

[29]  Hiroyuki Nakano,et al.  Post-Newtonian quasicircular initial orbits for numerical relativity , 2017, 1702.00872.

[30]  Karan Jani,et al.  Georgia tech catalog of gravitational waveforms , 2016, 1605.03204.

[31]  S. McWilliams,et al.  A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case , 2007, 0704.1964.

[32]  Christian Reisswig,et al.  Notes on the integration of numerical relativity waveforms , 2010, 1006.1632.

[33]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[34]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[35]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .

[36]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[37]  J. Healy,et al.  Spin flips in generic black hole binaries , 2015, 1506.04768.

[38]  M. Campanelli,et al.  Accurate black hole evolutions by fourth-order numerical relativity , 2005 .

[39]  S. McWilliams,et al.  Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis , 2007, 0707.0301.

[40]  A. Gopakumar,et al.  Comparison between numerical relativity and a new class of post-Newtonian gravitational-wave phase evolutions: The nonspinning equal-mass case , 2007, 0712.3737.

[41]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[42]  Y. Zlochower,et al.  Nonspinning binary black hole merger scenario revisited , 2017, 1705.07034.

[43]  Hiroyuki Nakano,et al.  Comparison of Numerical and Post-Newtonian Waveforms for Generic Precessing Black-Hole Binaries , 2008, 0808.0713.

[44]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[45]  Y. Zlochower,et al.  Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.

[46]  C. Lousto,et al.  The Lazarus project : A pragmatic approach to binary black hole , 2001, gr-qc/0104063.

[47]  Erik Schnetter,et al.  Collisions of unequal mass black holes and the point particle limit , 2011, 1105.5391.

[48]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[49]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[50]  Scott E. Field,et al.  Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models , 2015, Physical review letters.

[51]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[52]  Michael Purrer,et al.  The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity , 2016, 1612.09566.

[53]  Y. Zlochower,et al.  Characteristic extraction tool for gravitational waveforms , 2010, 1011.4223.

[54]  Michael Purrer,et al.  Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy , 2016, 1611.00332.

[55]  Scott E. Field,et al.  A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers , 2017, 1701.00550.

[56]  Y. Zlochower,et al.  Foundations of multiple black hole evolutions , 2007, 0711.1165.

[57]  Michael Boyle,et al.  On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology , 2015, 1512.06800.

[58]  L. Rezzolla,et al.  PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.

[59]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[60]  N. W. Taylor,et al.  Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or antialigned spins , 2013, 1305.5991.

[61]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[62]  Y. Zlochower,et al.  Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. , 2010, Physical review letters.

[63]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[64]  Y. Zlochower,et al.  Where angular momentum goes in a precessing black-hole binary , 2013, 1307.6237.

[65]  Michael Boyle,et al.  Transformations of asymptotic gravitational-wave data , 2015, 1509.00862.

[66]  Lawrence E. Kidder,et al.  Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles. , 2015, Physical review letters.

[67]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[68]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[69]  Unstable flip-flopping spinning binary black holes , 2016, 1601.05086.

[70]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[71]  S. McWilliams,et al.  Consistency of post-Newtonian waveforms with numerical relativity. , 2006, Physical review letters.

[72]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[73]  Carlos O. Lousto,et al.  Remnant of binary black-hole mergers: New simulations and peak luminosity studies , 2016, 1610.09713.

[74]  J. Healy,et al.  Flip-flopping binary black holes. , 2014, Physical review letters.

[75]  Y. Zlochower,et al.  Algebraic classification of numerical spacetimes and black-hole-binary remnants , 2008, 0811.3006.

[76]  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[77]  J. Baker,et al.  Decoding mode-mixing in black-hole merger ringdown , 2012, 1212.5553.

[78]  José A González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[79]  L. Rezzolla,et al.  ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES , 2012, 1206.3803.

[80]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[81]  Bernard J. Kelly,et al.  The lazarus project. II. Spacelike extraction with the quasi-Kinnersley tetrad , 2006 .

[82]  Frans Pretorius,et al.  High-energy collision of two black holes. , 2008, Physical review letters.

[83]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[84]  W. Marsden I and J , 2012 .

[85]  Sascha Husa,et al.  Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case , 2007, 0712.3787.

[86]  Y. Zlochower,et al.  Perturbative extraction of gravitational waveforms generated with numerical relativity , 2015, 1503.00718.

[87]  Y. Zlochower,et al.  Accuracy Issues for Numerical Waveforms , 2012, 1208.5494.

[88]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[89]  Y. Zlochower,et al.  Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.

[90]  Olaf Dreyer,et al.  Introduction to isolated horizons in numerical relativity , 2003 .

[91]  S. Ossokine,et al.  Comparing post-Newtonian and numerical relativity precession dynamics , 2015, 1502.01747.