Positive maps, states, entanglement and all that; some old and new problems
暂无分享,去创建一个
[1] W. Stinespring. Positive functions on *-algebras , 1955 .
[2] E. Størmer. Positive linear maps of operator algebras , 2012 .
[3] Richard V. Kadison,et al. Transformations of states in operator theory and dynamics , 1965 .
[4] P. Dirac. QUANTUM ELECTRODYNAMICS WITHOUT DEAD WOOD , 1965 .
[5] William Arveson,et al. Subalgebras ofC*-algebras , 1969 .
[6] W. Arveson. On subalgebras of $C^*$-algebras , 1969 .
[7] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[8] Man-Duen Choi. A schwarz inequality for positive linear maps on $C^{\ast}$-algebras , 1974 .
[9] A. Connes. Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann , 1974 .
[10] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[11] C*-Algebras and Applications to Physics , 1978 .
[12] E. Effros. Aspects of non-commutative order , 1978 .
[13] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[14] T. Andô. Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .
[15] Some remarks on C∗-convexity , 1981 .
[16] J. Ward,et al. The geometric structure of generalized state spaces , 1981 .
[17] E. Størmer. DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .
[18] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[19] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[20] P. Muhly,et al. On Isometries of Operator Algebras , 1994 .
[21] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[22] Seung-Hyeok Kye. BOUNDARIES OF THE CONE OF POSITIVE LINEAR MAPS AND ITS SUBCONES IN MATRIX ALGEBRAS , 1996 .
[23] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[24] Seung-Hyeok Kye. Facial Structures for the Positive Linear Maps Between Matrix Algebras , 1996, Canadian Mathematical Bulletin.
[25] Does quantum chaos exist? (A quantum Lyapunov exponents approach.) , 1998, quant-ph/9805068.
[26] W. Majewski,et al. On a characterization of positive maps , 2001 .
[27] F. Shultz,et al. State Spaces of Operator Algebras , 2001 .
[28] W. Majewski. On entanglement of states and quantum correlations , 2002, math-ph/0202030.
[29] F. Shultz,et al. Geometry Of State Spaces Of Operator Algebras , 2002 .
[30] M. Keyl. Fundamentals of quantum information theory , 2002, quant-ph/0202122.
[31] Kil-Chan Ha,et al. Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.
[32] W. Majewski,et al. On k-decomposability of positive maps , 2003, quant-ph/0411035.
[33] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras , 2003, Open Syst. Inf. Dyn..
[34] On Quantum Correlations and Positive Maps , 2004, math-ph/0403024.
[35] Wladyslaw A. Majewski. On Positive Maps, Entanglement and Quantization , 2004, Open Syst. Inf. Dyn..
[36] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..
[37] Facial Structures for Decomposable Positive Linear Maps in Matrix Algebras , 2005 .
[38] K. R. Parthasarathy,et al. Mathematical Foundation of Quantum Mechanics , 2005 .
[39] Decomposability of extremal positive maps on $M_2$ , 2005 .