Magnetic Nanosystem for Cancer Therapy Using Oncocalyxone A, an Antitomour Secondary Metabolite Isolated from a Brazilian Plant
暂无分享,去创建一个
Luigi Carbone | Giuseppe Mele | Juliano C. Denardin | L. Carbone | S. Mazzetto | G. Mele | R. M. Freire | P. Fechine | O. Pessoa | Antônio C. H. Barreto | Vivian R. Santiago | Rafael M. Freire | Selma E. Mazzetto | Igor M. Cavalcante | Maria E. N. P. Ribeiro | Nágila M. P. S. Ricardo | Tamara Gonçalves | Telma L. G. Lemos | Otília D. L. Pessoa | Pierre B. A. Fechine | J. Denardin | I. M. Cavalcante | T. G. Lemos | A. C. Barreto | V. R. Santiago | N. Ricardo | M. E. N. Ribeiro | Tamara Gonçalves | V. Santiago
[1] P. Doraiswamy,et al. Metals in our minds: therapeutic implications for neurodegenerative disorders , 2004, The Lancet Neurology.
[2] L. Deng,et al. Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method , 2009 .
[3] E. Silveira,et al. Novel Cordiachromes Isolated from Auxemma oncocalyx , 1993 .
[4] M. Abrashev,et al. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids , 2010 .
[5] Bikram Singh,et al. Development of biodegradable nanoparticles for delivery of quercetin. , 2010, Colloids and surfaces. B, Biointerfaces.
[6] N. Peppas,et al. Mechanisms of solute release from porous hydrophilic polymers , 1983 .
[7] Yuanhua Lin,et al. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties , 2012 .
[8] T. P. Braga,et al. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides , 2010 .
[9] C. Booth,et al. Triad sequence assignment of the 13C-NMR spectra of copolymers of ethylene oxide and 1,2-butylene oxide , 1990 .
[10] D. Leslie-Pelecky,et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.
[11] E. Lai,et al. A comparative study of magnetic transferability of superparamagnetic nanoparticles , 2010 .
[12] A. Curtis,et al. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture , 2004, Journal of materials science. Materials in medicine.
[13] R. R. Huruta,et al. Oncocalyxones A and C, 1,4-anthracenediones from Auxemma oncocalyx: comparison with anticancer 1,9-anthracenediones. , 2000, Anticancer research.
[14] L. Costa-Lotufo,et al. Toxicity to sea urchin egg development of the quinone fraction obtained from Auxemma oncocalyx. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
[15] P A Voltairas,et al. Hydrodynamics of magnetic drug targeting. , 2002, Journal of biomechanics.
[16] L. Carbone,et al. Novel ferrofluids coated with a renewable material obtained from cashew nut shell liquid , 2012 .
[17] M. Schattner,et al. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibα glycoprotein , 2008, British journal of pharmacology.
[18] Y. Wang,et al. Formulation of Superparamagnetic Iron Oxides by Nanoparticles of Biodegradable Polymers for Magnetic Resonance Imaging , 2008 .
[19] K. Neoh,et al. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. , 2006, Biomaterials.
[20] Carla Lopes,et al. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos , 2005 .
[21] H. S. dos Santos,et al. Anthracene derivatives from Auxemma oncocalyx. , 2000, Phytochemistry.
[22] O. Pessoa,et al. Analgesic and anti-inflammatory activities of a fraction rich in oncocalyxone A isolated from Auxemma oncocalyx. , 2004, Phytomedicine : international journal of phytotherapy and phytopharmacology.
[23] T. Higuchi,et al. Rate of release of medicaments from ointment bases containing drugs in suspension. , 1961, Journal of pharmaceutical sciences.
[24] Sungho Jin,et al. Magnetic nanoparticles for theragnostics. , 2009, Advanced drug delivery reviews.
[25] C. Robic,et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.
[26] V. Bulmus,et al. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications , 2010 .
[27] Piero Baglioni,et al. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field , 2010 .
[28] V. John,et al. Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications , 2010 .
[29] S. Mazzetto,et al. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy , 2011 .
[30] Christoph Alexiou,et al. Targeting cancer cells: magnetic nanoparticles as drug carriers , 2006, European Biophysics Journal.
[31] K. Nakatsuka,et al. Mixed spinel structure in nanocrystalline NiFe 2 O 4 , 2001 .
[32] A. Leyva,et al. Antiproliferative effects of compounds derived from plants of Northeast Brazil , 2000, Phytotherapy research : PTR.
[33] Pallab Pradhan,et al. Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1−xBxFe2O4, B=Mn, Co (x=0–1)] for biomedical applications , 2008 .
[34] Hong Yuan,et al. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics , 2011 .
[35] C. Booth,et al. Micellisation of diblock copoly(oxyethylene/oxybutylene) in aqueous solution , 1993 .
[36] O. Pessoa. Cordiachromes from Auxemma oncocalyx , 1995 .
[37] Rui Manadas,et al. A dissolução in vitro na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada , 2002 .