Information theoretic approaches to source separation

Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.

[1]  J. Cardoso,et al.  Maximum Likelihood Source SeparationBy the Expectation-Maximization Technique : Deterministic and Stochastic Implementation , 1995 .

[2]  R. F. Lyon,et al.  Correlograms and the Separation of Sounds , 1990, 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, 1990..

[3]  Erkki Oja,et al.  Principal and Independent Components in Neural Networks - Recent Developments , 1995 .

[4]  A. Norman Redlich,et al.  Redundancy Reduction as a Strategy for Unsupervised Learning , 1993, Neural Computation.

[5]  Tomohiro Nakatani,et al.  Auditory Stream Segregation in Auditory Scene Analysis with a Multi-Agent System , 1994, AAAI.

[6]  G. Deco,et al.  An Information-Theoretic Approach to Neural Computing , 1997, Perspectives in Neural Computing.

[7]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[8]  S. Amari Information Geometry of Neural Networks | New Bayesian Duality Theory | , 1996 .

[9]  Jean-Francois Cardoso,et al.  Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[10]  Daniel P. W. Ellis,et al.  A Wavelet Based Sinusoid Model of Sound for Auditory Signal Separation , 1991, ICMC.

[11]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[12]  Shun-ichi Amari,et al.  Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information , 1997, Neural Computation.

[13]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[14]  E. Oja The Nonlinear PCA Learning Rule and Signal Separation - Mathematical Analysis , 1995 .

[15]  M. Bodden Modeling human sound-source localization and the cocktail-party-effect , 1993 .

[16]  Shun-ichi Amari,et al.  Superefficiency in blind source separation , 1999, IEEE Trans. Signal Process..

[17]  Jean-Francois Cardoso,et al.  ITERATIVE TECHNIQUES FOR BLIND SOURCE SEPARATION USING ONLY FOURTH-ORDER CUMULANTS , 1992 .

[18]  Andrzej Cichocki,et al.  Hidden image separation from incomplete image mixtures by independent component analysis , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[19]  Barak A. Pearlmutter,et al.  A Context-Sensitive Generalization of ICA , 1996 .

[20]  Andrzej Cichocki,et al.  Neural network approach to blind separation and enhancement of images , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[21]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[22]  David K. Mellinger,et al.  Event formation and separation in musical sound , 1992 .

[23]  C. Fyfe,et al.  Higher Order Cumulant Maximisation using Non-linear Hebbian and Anti-Hebbian Learning for Adaptive Blind Separation of Source Signals , 1996 .

[24]  Kari Torkkola,et al.  Blind separation of convolved sources based on information maximization , 1996, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.

[25]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[26]  J. Cardoso,et al.  On optimal source separation based on second and fourth order cumulants , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[27]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[28]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[29]  Jean-Francois Cardoso Performance and implementation of invariant source separation algorithms , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[30]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[31]  M. Girolami Negentropy and Kurtosis as Projection Pursuit Indices Provide Generalised ICA Algorithms , 1996, NIPS 1996.

[32]  J. Cardoso,et al.  A tetradic decomposition of 4th-order tensors: Application to the source separation problem , 1995 .

[33]  Erkki Oja,et al.  Signal Separation by Nonlinear Hebbian Learning , 1995 .

[34]  Daniel Patrick Whittlesey Ellis,et al.  Prediction-driven computational auditory scene analysis , 1996 .

[35]  J. Cardoso The Invariant Approach to Source Separation I Introduction: Source Separation , 1995 .

[36]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[37]  Reinhold Orglmeister,et al.  Blind source separation of real world signals , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[38]  W. Hartmann Pitch Perception and the Segregation and Integration of Auditory Entities , 1988 .

[39]  J. Karhunen,et al.  Neural Estimation of Basis Vectors in Independent Component Analysis , 1995 .

[40]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[41]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[42]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[43]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[44]  Guy J. Brown Computational auditory scene analysis : a representational approach , 1993 .

[45]  T. W. Parsons Separation of speech from interfering speech by means of harmonic selection , 1976 .

[46]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[47]  Shun-ichi Amari,et al.  Self-adaptive neural networks for blind separation of sources , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[48]  Pierre Comon,et al.  Independent component analysis, a survey of some algebraic methods , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[49]  R. Lambert Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures , 1996 .

[50]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[51]  Adel Belouchrani,et al.  A new composite criterion for adaptive and iterative blind source separation , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[52]  Shumeet Baluja,et al.  Advances in Neural Information Processing , 1994 .

[53]  Erkki Oja Applications of Learning and Intelligent Systems - the Finnish Technology Programme , 1995 .

[54]  Shun-ichi Amari,et al.  Statistical Analysis of Regularization Constant - From Bayes, MDL and NIC Points of View , 1997, IWANN.

[55]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[56]  J. Cardoso,et al.  An efficient technique for the blind separation of complex sources , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[57]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Te-Won Lee,et al.  Blind Separation of Delayed and Convolved Sources , 1996, NIPS.

[59]  S. Amari,et al.  Gradient Learning in Structured Parameter Spaces: Adaptive Blind Separation of Signal Sources , 1996 .

[60]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[61]  Mitchel Weintraub,et al.  A theory and computational model of auditory monaural sound separation , 1985 .

[62]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[63]  P. Comon,et al.  Higher-order power method - application in independent component analysis , 1995 .

[64]  Shun-ichi Amari,et al.  Multi-Layer Neural Networks with a Local Adaptive Learning Rule for Blind Separation of Source Signa , 1995 .

[65]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[66]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[67]  Shun-ichi Amari,et al.  Recurrent Neural Networks For Blind Separation of Sources , 1995 .

[68]  Juha Karhunen,et al.  Neural approaches to independent component analysis and source separation , 1996, ESANN.

[69]  A. J. Bell,et al.  Fast blind separation based on information theory , 1995 .

[70]  Shun-ichi Amari,et al.  Blind source separation-semiparametric statistical approach , 1997, IEEE Trans. Signal Process..

[71]  Shun-ichi Amari,et al.  Neural Learning in Structured Parameter Spaces - Natural Riemannian Gradient , 1996, NIPS.

[72]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[73]  Jean-Francois Cardoso,et al.  Adaptive Source Separation With Uniform Performance , 1994 .

[74]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[75]  Erkki Oja Helsinki PCA, ICA, and Nonlinear Hebbian Learning , 1995 .

[76]  Marimuthu Palaniswami,et al.  Computational Intelligence: A Dynamic System Perspective , 1995 .

[77]  Kari Torkkola,et al.  Blind separation of delayed sources based on information maximization , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[78]  Juha Karhunen,et al.  Nonlinear PCA type approaches for source separation and independent component analysis , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[79]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[80]  Barry Vercoe,et al.  Connection Machine Tracking of Polyphonic Audio , 1988, ICMC.