Heavy-quark deep-inelastic scattering with a running mass

Abstract We study the production of heavy quarks in deep-inelastic scattering within perturbative QCD. As a new result, we employ for the first time the running mass definition in the MS ¯ scheme for deep-inelastic charm and bottom production. We observe an improved stability of the perturbative expansion and a reduced theoretical uncertainty due to variations of the renormalization and factorization scales. As our best estimate we extract from a global fit to fixed-target and HERA collider data for the charm-quark an MS ¯ mass of m c ( m c ) = 1.01 ± 0.09 ( exp ) ± 0.03 ( th ) GeV .

[1]  T. Gottschalk Chromodynamic corrections to neutrino production of heavy quarks , 1981 .

[2]  W. L. van Neerven,et al.  Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.

[3]  Z. A. Ibrahim,et al.  Measurement of D*± production in deep inelastic scattering at HERA , 2003, 1303.6578.

[4]  Peter Uwer,et al.  HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR , 2011, Comput. Phys. Commun..

[5]  J. G. Contreras,et al.  Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA , 2009, 0907.2643.

[6]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[7]  Heavy-quark correlations in deep-inelastic electroproduction , 1995, hep-ph/9503484.

[8]  A. Martin,et al.  Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions , 2010, 1007.2624.

[9]  Johannes Blumlein,et al.  Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2 , 2007 .

[10]  B. Blumenfeld,et al.  Neutrino production of opposite sign dimuons in the NOMAD experiment , 2000 .

[11]  J. Blumlein,et al.  Update of the NNLO PDFs in the 3-, 4-, and 5-flavour scheme , 2010, 1007.3657.

[12]  Pole mass of the heavy quark: Perturbation theory and beyond. , 1994, Physical review. D, Particles and fields.

[13]  S. Moch,et al.  Higher order QCD corrections to charged-lepton deep-inelastic scattering and global fits of parton distributions , 2008, 0811.1412.

[14]  M. Gluck,et al.  The strange sea density and charm production in deep inelastic charged current processes , 1996, hep-ph/9603304.

[15]  M. Steinhauser,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000 .

[16]  Johannes Blumlein,et al.  Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.

[17]  The three-loop relation between the and the pole quark masses , 1999, hep-ph/9912391.

[18]  C. Sturm,et al.  Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties , 2010, Theoretical and Mathematical Physics.

[19]  O(αs2) contributions to charm production in charged-current deep-inelastic lepton-hadron scattering , 1997, hep-ph/9702242.

[20]  S. Forte,et al.  Heavy quarks in deep-inelastic scattering , 2010, 1001.2312.

[21]  P. Vilain Leading order QCD analysis of neutrino induced dimuon events , 1999 .

[22]  R. Petti,et al.  Determination of strange sea distributions from νN deep inelastic scattering , 2008, 0812.4448.

[23]  The relation between the $\bar{\rm MS}$ and the on-shell quark mass at order $\alpha_s^3$ , 1999, hep-ph/9911434.

[24]  J. Smith,et al.  Complete O(αS) corrections to heavy-flavour structure functions in electroproduction , 1993 .

[25]  A. Mitov,et al.  Soft gluon resummation for heavy quark production in charged current deep inelastic scattering , 2003, hep-ph/0308105.

[26]  A. Bodek,et al.  Determination of the strange quark content of the nucleon from a next-to-leading-order QCD analysis of neutrino charm production , 1994 .

[27]  W. Marsden I and J , 2012 .

[28]  A. Vogt,et al.  Threshold-improved predictions for charm production in deep-inelastic scattering , 2010, 1008.0951.

[29]  E. al.,et al.  Precise measurement of dimuon production cross-sections in muon neutrino Fe and muon anti-neutrino Fe deep inelastic scattering at the Tevatron , 2001, hep-ex/0102049.

[30]  P. Jimenez-Delgado,et al.  Dynamical parton distributions of the nucleon and very small-x physics , 2007, 0709.0614.

[31]  Richard D. Ball,et al.  A determination of parton distributions with faithful uncertainty estimation , 2009 .

[33]  K. Schilcher,et al.  Three-loop relation of quark $$\overline {MS} $$ and pole masses , 1990 .

[34]  J. Huston,et al.  Implications of CTEQ global analysis for collider observables , 2008, 0802.0007.

[35]  Johannes Blümlein,et al.  3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders , 2010 .

[36]  Z. A. Ibrahim,et al.  Measurement of D*± production in deep inelastic scattering at HERA , 2003, 1303.6578.

[37]  Zeus Collaborations Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA , 2009 .

[38]  U. Langenfeld,et al.  Measuring the running top-quark mass , 2009, 0906.5273.

[39]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.