Deciding reachability of the infimum of a multivariate polynomial

Let <i>f</i> ∈ Q[<i>X</i>_1,...,<i>X<sub>n</sub></i>] be of degree <i>D</i>. Algorithms for solving the unconstrained global optimization problem <i>f</i>*=inf<sub><i>x</i></sub>∈<i>R<sup>n</sup></i> <i>f</i>(<i>x</i>) are of first importance since this problem appears frequently in numerous applications in engineering sciences. This can be tackled by either designing appropriaten quantifier elimination algorithms or by certifying lower bounds on <i>f</i>* by means of sums of squares decompositions but there is no efficient algorithm for deciding if <i>f</i>* is a minimum. This paper is dedicated to this important problem. We design a probabilistic algorithm that decides, for a given <i>f</i> and the corresponding <i>f</i>*, if <i>f</i>* is reached over <i>R<sup>n</sup></i> and computes a point <i>x</i>* ∈ <i>R<sup>n</sup></i> such that <i>f</i>(<i>x</i>*)=<i>f</i>* if such a point exists. This algorithm makes use of algebraic elimination algorithms and real root isolation. If <i>L</i> is the length of a straight-line program evaluating <i>f</i>, algebraic elimination steps run in <i>O</i>(log(<i>D</i>-1)<i>n</i><sup>6</sup>(<i>nL</i>+<i>n</i><sup>4</sup>)<i>U</i>((<i>D</i>-1)<sup><i>n</i>+1</sup>)<sup>3</sup>) arithmetic operations in <i>Q</i> where <i>D</i>=deg(<i>f</i>) and <i>U</i>(<i>x</i>)=<i>x</i>(log (<i>x</i>))<sup>2</sup> log log (<i>x</i>). Experiments show its practical efficiency.

[1]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[2]  Mohab Safey El Din,et al.  Computing the global optimum of a multivariate polynomial over the reals , 2008, ISSAC '08.

[3]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[4]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[5]  Erich Kaltofen,et al.  A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions , 2009, SNC '09.

[6]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[7]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[8]  Didier Henrion Polynômes et optimisation convexe en commande robuste , 2007 .

[9]  E. Kunz Introduction to commutative algebra and algebraic geometry , 1984 .

[10]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[11]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[12]  Tony Crilly,et al.  Bifurcations and Catastrophes , 2000 .

[13]  Mohab Safey El Din Finding Sampling Points on Real Hypersurfaces in Easier in Singular Situations , 2005 .

[14]  François Anton AMS Mathematical review of the paper "Everett, Hazel; Lazard, Daniel (F-PARIS6-IP6); Lazard, Sylvain; Safey El Din, Mohab (F-PARIS6-IP6) The Voronoi diagram of three lines. (English summary) Discrete Comput. Geom. 42 (2009), no. 1, 94–130." , 2011 .

[15]  Marc Giusti,et al.  On the intrinsic complexity of point finding in real singular hypersurfaces , 2009, Inf. Process. Lett..

[16]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[17]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[18]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[19]  Lihong Zhi,et al.  Global optimization of polynomials using generalized critical values and sums of squares , 2010, ISSAC.

[20]  Michel Demazure,et al.  Bifurcations and Catastrophes: Geometry Of Solutions To Nonlinear Problems , 2000 .

[21]  Zbigniew Jelonek,et al.  Testing sets for properness of polynomial mappings , 1999 .

[22]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[23]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[24]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[25]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[26]  Lihong Zhi,et al.  Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions , 2010, SIAM J. Optim..

[27]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[28]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.