Existence of positive ground state solutions for Kirchhoff type problems

Abstract In this paper, we study the existence of positive ground state solutions for the nonlinear Kirchhoff type problem { − ( a + b ∫ R 3 | ∇ u | 2 ) △ u + V ( x ) u = f ( u ) in  R 3 , u ∈ H 1 ( R 3 ) , u > 0 in  R 3 , where a , b > 0 are constants, f ∈ C ( R , R ) is subcritical near infinity and superlinear near zero and satisfies the Berestycki–Lions condition. By using an abstract critical point theorem established by Jeanjean and a new global compactness lemma, we show that the above problem has at least a positive ground state solution. Our result generalizes the results of Li and Ye (2014) concerning the nonlinearity f ( u ) = | u | p − 1 u with p ∈ ( 2 , 5 ) .

[1]  Jianjun Nie,et al.  Existence and multiplicity of non-trivial solutions for Schrodinger-Kirchhoff-type equations with radial potential , 2012 .

[2]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[3]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[4]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[5]  Giovany M. Figueiredo,et al.  Nonlinear perturbations of a periodic Kirchhoff equation in RN , 2012 .

[6]  Yueh-Cheng Kuo,et al.  The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions , 2011 .

[7]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[8]  Shangjiang Guo,et al.  Positive solutions for asymptotically linear Schrödinger–Kirchhoff-type equations , 2014 .

[9]  Lixin Tian,et al.  Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth , 2012 .

[10]  Hongyu Ye,et al.  Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3 , 2014 .

[11]  Bitao Cheng,et al.  Existence results of positive solutions of Kirchhoff type problems , 2009 .

[12]  Shangjiang Guo,et al.  Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent , 2014, Zeitschrift für angewandte Mathematik und Physik.

[13]  Yang Yang,et al.  Nontrivial solutions of a class of nonlocal problems via local linking theory , 2010, Appl. Math. Lett..

[14]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[15]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[16]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[17]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Xian Wu,et al.  Infinitely many radial solutions for Kirchhoff-type problems in RN , 2010 .

[19]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[20]  Yisheng Huang,et al.  On a class of Kirchhoff type problems , 2014 .

[21]  Fuyi Li,et al.  Existence of a positive solution to Kirchhoff type problems without compactness conditions , 2012 .

[22]  Nils Ackermann,et al.  On a periodic Schrödinger equation with nonlocal superlinear part , 2004 .

[23]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[24]  Xian Wu,et al.  Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN☆ , 2011 .

[25]  Anmin Mao,et al.  Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition , 2009 .

[26]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[27]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .

[28]  Antonio Azzollini,et al.  The elliptic Kirchhoff equation in $\mathbb R^N$ perturbed by a local nonlinearity , 2012, Differential and Integral Equations.

[29]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[30]  Y. Shibata,et al.  On global solvability of non‐linear viscoelastic equations in the analytic category , 1994 .

[31]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[32]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .