Towards a Cardinality Theorem for Finite Automata
暂无分享,去创建一个
[1] Frank Stephan,et al. Effective Search Problems , 1994, Math. Log. Q..
[2] Edith Hemaspaandra,et al. A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..
[3] L. Hemachandra. The strong exponential hierarchy collapses , 1987, STOC 1987.
[4] Till Tantau,et al. Comparing Verboseness for Finite Automata and Turing Machines , 2002, Theory of Computing Systems.
[5] Jin-Yi Cai,et al. Enumerative Counting Is Hard , 1989, Inf. Comput..
[6] E. Kinber. Frequency computations in finite automata , 1976 .
[7] R. Beigel. Query-limited reducibilities , 1988 .
[8] Edith Hemaspaandra,et al. What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.
[9] Jim Kadin,et al. P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..
[10] Martin Kummer. A Proof of Beigel's Cardinality Conjecture , 1992, J. Symb. Log..
[11] Valentina S. Harizanov,et al. Frequency Computations and the Cardinality Theorem , 1992, J. Symb. Log..
[12] Arfst Nickelsen. On Polynomially D-Verbose Sets , 1997, STACS.
[13] Róbert Szelepcsényi,et al. The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.
[14] James C. Owings,et al. A cardinality version of Beigel's nonspeedup theorem , 1989, Journal of Symbolic Logic.
[15] William I. Gasarch,et al. Bounded queries in recursion theory: a survey , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.
[16] Stephen R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[17] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[18] C. Jockusch. Reducibilities in recursive function theory. , 1966 .
[19] Jim Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.
[20] Frank Stephan,et al. The complexity of oddan , 2000 .
[21] Frank Stephan,et al. The complexity of ODDnA , 2000, Journal of Symbolic Logic.
[22] Arfst Nickelsen,et al. Counting, Selecting, adn Sorting by Query-Bounded Machines , 1993, STACS.
[23] Jim Kadin. The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..
[24] Volker Diekert,et al. A structural property of regular frequency computations , 2003, Theor. Comput. Sci..