Towards a Cardinality Theorem for Finite Automata

Kummer's cardinalitytheorem states that a language is recursive if a Turing machine can exclude for any n words one of the n + 1 possibilities for the number of words in the language. This paper gathers evidence that the cardinalitytheorem might also hold for finite automata. Three reasons are given. First, Beigel's nonspeedup theorem also holds for finite automata. Second, the cardinalitytheorem for finite automata holds for n = 2. Third, the restricted cardinalitytheorem for finite automata holds for all n.

[1]  Frank Stephan,et al.  Effective Search Problems , 1994, Math. Log. Q..

[2]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[3]  L. Hemachandra The strong exponential hierarchy collapses , 1987, STOC 1987.

[4]  Till Tantau,et al.  Comparing Verboseness for Finite Automata and Turing Machines , 2002, Theory of Computing Systems.

[5]  Jin-Yi Cai,et al.  Enumerative Counting Is Hard , 1989, Inf. Comput..

[6]  E. Kinber Frequency computations in finite automata , 1976 .

[7]  R. Beigel Query-limited reducibilities , 1988 .

[8]  Edith Hemaspaandra,et al.  What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.

[9]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[10]  Martin Kummer A Proof of Beigel's Cardinality Conjecture , 1992, J. Symb. Log..

[11]  Valentina S. Harizanov,et al.  Frequency Computations and the Cardinality Theorem , 1992, J. Symb. Log..

[12]  Arfst Nickelsen On Polynomially D-Verbose Sets , 1997, STACS.

[13]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[14]  James C. Owings,et al.  A cardinality version of Beigel's nonspeedup theorem , 1989, Journal of Symbolic Logic.

[15]  William I. Gasarch,et al.  Bounded queries in recursion theory: a survey , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[16]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[17]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[18]  C. Jockusch Reducibilities in recursive function theory. , 1966 .

[19]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[20]  Frank Stephan,et al.  The complexity of oddan , 2000 .

[21]  Frank Stephan,et al.  The complexity of ODDnA , 2000, Journal of Symbolic Logic.

[22]  Arfst Nickelsen,et al.  Counting, Selecting, adn Sorting by Query-Bounded Machines , 1993, STACS.

[23]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[24]  Volker Diekert,et al.  A structural property of regular frequency computations , 2003, Theor. Comput. Sci..