Large Time Behavior and Convergence Rate for Quantum Filters Under Standard Non Demolition Conditions

A quantum system $${\mathcal S}$$S undergoing continuous time measurement is usually described by a jump-diffusion stochastic differential equation. Such an equation is called a quantum filtering equation (or quantum stochastic master equation) and its solution is called a quantum filter (or quantum trajectory). This solution describes the evolution of the state of $${\mathcal S}$$S. In the context of quantum non demolition measurement, we investigate the large time behavior of this solution. It is rigorously shown that, for large time, this solution behaves as if a direct Von Neumann measurement has been performed at time 0. In particular the solution converges to a random pure state which can be directly linked to the wave packet reduction postulate. Using the theory of Girsanov transformation, we obtain the explicit rate of convergence towards this random state. The problem of state estimation (used in experiment) is also investigated.

[1]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[2]  Mazyar Mirrahimi,et al.  Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays , 2012, Autom..

[3]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[4]  Cl'ement Pellegrini,et al.  Existence, uniqueness and approximation of a stochastic Schrödinger equation: The diffusive case , 2007, 0709.1703.

[5]  V. P. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991 .

[6]  Alberto Barchielli,et al.  Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case , 2009 .

[7]  C. Pellegrini Markov chains approximation of jump-diffusion stochastic master equations , 2010 .

[8]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[9]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[10]  E. B. Davies Quantum theory of open systems , 1976 .

[11]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[12]  Denis Bernard,et al.  Repeated Quantum Non-Demolition Measurements: Convergence and Continuous Time Limit , 2012, 1206.6045.

[13]  Alberto Barchielli Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics , 1990 .

[14]  L. Diósi Quantum stochastic processes as models for state vector reduction , 1988 .

[15]  Viacheslav P. Belavkin,et al.  A continuous counting observation and posterior quantum dynamics , 1989 .

[16]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[17]  Mazyar Mirrahimi,et al.  Stabilization of a Delayed Quantum System: The Photon Box Case-Study , 2010, IEEE Transactions on Automatic Control.

[18]  N. Gisin,et al.  The quantum-state diffusion model applied to open systems , 1992 .

[19]  Pierre Rouchon,et al.  Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters , 2010, IEEE Transactions on Automatic Control.

[20]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[21]  Mazyar Mirrahimi,et al.  On stability of continuous-time quantum filters , 2011, IEEE Conference on Decision and Control and European Control Conference.

[22]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[23]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[24]  S. L. Adler,et al.  Martingale models for quantum state reduction , 2001 .

[25]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[26]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[27]  M. Brune,et al.  Recording the Birth and Death of a Photon in a Cavity , 2007 .

[28]  R. Handel The stability of quantum Markov filters , 2007, 0709.2216.

[29]  Denis Bernard,et al.  Iterated stochastic measurements , 2012, 1210.0425.

[30]  V. P. Belavkin,et al.  Quantum Diffusion, Measurement and Filtering I , 1994 .

[31]  Mário Ziman,et al.  Description of Quantum Dynamics of Open Systems Based on Collision-Like Models , 2004, Open Syst. Inf. Dyn..

[32]  Yan Pautrat,et al.  From (n+1)-level atom chains to n-dimensional noises , 2005 .

[33]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[34]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[35]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[36]  Howard Mark Wiseman Quantum trajectories and feedback , 1994 .

[37]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[38]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[39]  Clément Pellegrini,et al.  Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems , 2010 .

[40]  Milburn Quantum measurement theory of optical heterodyne detection. , 1987, Physical review. A, General physics.

[41]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[42]  Vladimir B. Braginsky,et al.  Quantum Nondemolition Measurements , 1980, Science.

[43]  Denis Bernard,et al.  Convergence of repeated quantum nondemolition measurements and wave-function collapse , 2011, 1106.4953.

[44]  Stochastic differential equations for trace-class operators and quantum continual measurements , 2000, math/0012226.

[45]  F. Zucca,et al.  On a class of stochastic differential equations used in quantum optics , 1996, funct-an/9711002.

[46]  H. Carmichael An open systems approach to quantum optics , 1993 .

[47]  Alberto Barchielli,et al.  Constructing quantum measurement processes via classical stochastic calculus , 1995 .

[48]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[49]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[50]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[51]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .