Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2

We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.

[1]  Bernt Wennberg,et al.  Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation , 1995 .

[2]  Y. Naito,et al.  SELF-SIMILAR SOLUTIONS TO A NONLINEAR PARABOLIC-ELLIPTIC SYSTEM , 2004 .

[3]  S. Mischler,et al.  The Continuous Coagulation-Fragmentation¶Equations with Diffusion , 2002 .

[4]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[5]  Takashi Suzuki,et al.  Weak Solutions to a Parabolic-Elliptic System of Chemotaxis , 2002 .

[6]  P. Laurençot,et al.  The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .

[7]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..

[8]  Benoît Perthame,et al.  A chemotaxis model motivated by angiogenesis , 2003 .

[9]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[10]  J. J. L. Velázquez,et al.  Stability of Some Mechanisms of Chemotactic Aggregation , 2002, SIAM J. Appl. Math..

[11]  Takashi Suzuki,et al.  Applied analysis: mathematical methods in natural science , 2004 .

[12]  Takashi Suzuki,et al.  Free Energy and Self-Interacting Particles , 2005 .

[13]  E. Lieb,et al.  The Thomas-Fermi-von Weizsäcker theory of atoms and molecules , 1981 .

[14]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[15]  William Beckner,et al.  Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .

[16]  Y. Naito Symmetry results for semilinear elliptic equations in R2 , 2001 .

[17]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[18]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[19]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[20]  R. Lathe Phd by thesis , 1988, Nature.

[21]  Michael Loss,et al.  Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .

[22]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[23]  M. Peletier,et al.  Global existence conditions for a nonlocal problem arising in statistical mechanics , 2004, Advances in Differential Equations.

[24]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[25]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[26]  Piotr Biler,et al.  A class of nonlocal parabolic problems occurring in statistical mechanics , 1993 .

[27]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[28]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[29]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[30]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[31]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[32]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[33]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[34]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[35]  A. Marrocco,et al.  Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .

[36]  János Engländer,et al.  Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one , 2006 .

[37]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[38]  Thanu Padmanabhan,et al.  Statistical mechanics of gravitating systems , 1990 .

[39]  P. Biler,et al.  Global and exploding solutions in a model of self-gravitating systems , 2003 .

[40]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[41]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[42]  Angela Stevens,et al.  The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems , 2000, SIAM J. Appl. Math..

[43]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[44]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[45]  François Bavaud,et al.  Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .

[46]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[47]  G. Wolansky Comparison between two models of self-gravitating clusters: conditions for gravitational collapse , 1995 .

[48]  C. Patlak Random walk with persistence and external bias , 1953 .

[49]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[50]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[51]  P. Laurençot,et al.  The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .

[52]  Ansgar Jüngel,et al.  Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research , 2004 .