Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2
暂无分享,去创建一个
[1] Bernt Wennberg,et al. Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation , 1995 .
[2] Y. Naito,et al. SELF-SIMILAR SOLUTIONS TO A NONLINEAR PARABOLIC-ELLIPTIC SYSTEM , 2004 .
[3] S. Mischler,et al. The Continuous Coagulation-Fragmentation¶Equations with Diffusion , 2002 .
[4] B. Gidas,et al. Symmetry and related properties via the maximum principle , 1979 .
[5] Takashi Suzuki,et al. Weak Solutions to a Parabolic-Elliptic System of Chemotaxis , 2002 .
[6] P. Laurençot,et al. The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .
[7] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..
[8] Benoît Perthame,et al. A chemotaxis model motivated by angiogenesis , 2003 .
[9] Dirk Horstmann,et al. Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.
[10] J. J. L. Velázquez,et al. Stability of Some Mechanisms of Chemotactic Aggregation , 2002, SIAM J. Appl. Math..
[11] Takashi Suzuki,et al. Applied analysis: mathematical methods in natural science , 2004 .
[12] Takashi Suzuki,et al. Free Energy and Self-Interacting Particles , 2005 .
[13] E. Lieb,et al. The Thomas-Fermi-von Weizsäcker theory of atoms and molecules , 1981 .
[14] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[15] William Beckner,et al. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .
[16] Y. Naito. Symmetry results for semilinear elliptic equations in R2 , 2001 .
[17] Piotr Biler,et al. LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .
[18] Hans G. Othmer,et al. Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..
[19] B. Perthame,et al. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .
[20] R. Lathe. Phd by thesis , 1988, Nature.
[21] Michael Loss,et al. Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .
[22] Benoît Perthame,et al. Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .
[23] M. Peletier,et al. Global existence conditions for a nonlocal problem arising in statistical mechanics , 2004, Advances in Differential Equations.
[24] F. Rühs,et al. J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .
[25] M. A. Herrero,et al. Singularity patterns in a chemotaxis model , 1996 .
[26] Piotr Biler,et al. A class of nonlocal parabolic problems occurring in statistical mechanics , 1993 .
[27] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[28] H. Gajewski,et al. Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .
[29] Elliott H. Lieb,et al. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .
[30] Wenxiong Chen,et al. Classification of solutions of some nonlinear elliptic equations , 1991 .
[31] V. Nanjundiah,et al. Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.
[32] J. V. Hurley,et al. Chemotaxis , 2005, Infection.
[33] R. Kowalczyk,et al. Preventing blow-up in a chemotaxis model , 2005 .
[34] Benoît Perthame,et al. Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .
[35] A. Marrocco,et al. Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .
[36] János Engländer,et al. Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one , 2006 .
[37] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[38] Thanu Padmanabhan,et al. Statistical mechanics of gravitating systems , 1990 .
[39] P. Biler,et al. Global and exploding solutions in a model of self-gravitating systems , 2003 .
[40] Benoît Perthame,et al. PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .
[41] J. Lions,et al. Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .
[42] Angela Stevens,et al. The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems , 2000, SIAM J. Appl. Math..
[43] Benoît Perthame,et al. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .
[44] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[45] François Bavaud,et al. Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .
[46] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[47] G. Wolansky. Comparison between two models of self-gravitating clusters: conditions for gravitational collapse , 1995 .
[48] C. Patlak. Random walk with persistence and external bias , 1953 .
[49] Jerome Percus,et al. Nonlinear aspects of chemotaxis , 1981 .
[50] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[51] P. Laurençot,et al. The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .
[52] Ansgar Jüngel,et al. Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research , 2004 .