Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2

[1]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[2]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[3]  Shinji Inazawa,et al.  Development of long life lithium ion battery for power storage , 2001 .

[4]  Esther S. Takeuchi,et al.  A Study of Capacity Fade in Cylindrical and Prismatic Lithium-Ion Batteries , 2001 .

[5]  M. Broussely,et al.  Aging mechanism in Li ion cells and calendar life predictions , 2001 .

[6]  Yo Kobayashi,et al.  Cycle life estimation of Lithium secondary battery by extrapolation method and accelerated aging test , 2001 .

[7]  K. Amine,et al.  Factors responsible for impedance rise in high power lithium ion batteries , 2001 .

[8]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[9]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[10]  Jai Prakash,et al.  Characterization of a commercial size cylindrical Li-ion cell with a reference electrode , 2000 .

[11]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[12]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[13]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[14]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[15]  David Linden,et al.  Handbook of batteries and fuel cells , 1984 .