Decimation and harmonic inversion of periodic orbit signals

We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either decimated linear predictor, decimated Pade approximant, or decimated signal diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter diagonalization method.

[1]  V. Mandelshtam,et al.  Spectral Analysis of Time Correlation Function for a Dissipative Dynamical System Using Filter Diagonalization: Application to Calculation of Unimolecular Decay Rates , 1997 .

[2]  M. V. Berry,et al.  Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .

[3]  Steiner,et al.  Novel rule for quantizing chaos. , 1992, Physical review letters.

[4]  M. Berry,et al.  Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[6]  William H. Press,et al.  Numerical recipes , 1990 .

[7]  E. Bogomolny On dynamical zeta function. , 1992, Chaos.

[8]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[9]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[10]  Dževad Belkić,et al.  Decimated signal diagonalization for obtaining the complete eigenspectra of large matrices , 1999 .

[11]  J. Keating,et al.  A rule for quantizing chaos , 1990 .

[12]  Michael D. Zoltowski,et al.  The mathematical basis for element and fourier beamspace MUSIC and root-MUSIC algorithms , 1991, Digit. Signal Process..

[13]  Daniel Neuhauser,et al.  Extraction, through filter‐diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short‐time segment of a signal. I. Theory and application to a quantum‐dynamics model , 1995 .

[14]  D. Neuhauser,et al.  Resonances from short time complex-scaled cross-correlation probability amplitudes by the Filter-Diagonalization Method , 1997 .

[15]  Semiclassical quantization by Padé approximant to periodic orbit sums , 1999, chao-dyn/9909008.

[16]  High Resolution Quantum Recurrence Spectra: Beyond the Uncertainty Principle , 1997 .

[17]  J. Main Use of Harmonic Inversion Techniques in Semiclassical Quantization and Analysis of Quantum Spectra , 1999, chao-dyn/9902008.

[18]  Bruno Eckhardt,et al.  Symmetry decomposition of chaotic dynamics , 1993, chao-dyn/9303016.

[19]  A. Voros Unstable periodic orbits and semiclassical quantisation , 1988 .

[20]  Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems , 1997, chao-dyn/9712015.

[21]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[22]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[23]  Vattay,et al.  Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra. , 1993, Physical review letters.

[24]  V. Mandelshtam,et al.  Harmonic inversion of time signals and its applications , 1997 .

[25]  G. Vattay,et al.  A Fredholm determinant for semiclassical quantization. , 1993, Chaos.

[26]  J. Keating,et al.  A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  V. Mandelshtam,et al.  Periodic Orbit Quantization by Harmonic Inversion of Gutzwiller's Recurrence Function , 1997 .

[28]  E. Bogomolny Semiclassical quantization of multidimensional systems , 1992 .

[29]  J. Main,et al.  PERIODIC ORBIT QUANTIZATION OF MIXED REGULAR CHAOTIC SYSTEMS , 1999, chao-dyn/9903003.

[30]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[31]  M. Berry,et al.  Calculating the bound spectrum by path summation in action-angle variables , 1977 .

[32]  Eckhardt,et al.  Resummation of classical and semiclassical periodic-orbit formulas. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Harmonic inversion as a general method for periodic orbit quantization , 1997, chao-dyn/9709009.