The construction of good lattice rules and polynomial lattice rules
暂无分享,去创建一个
[1] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[2] Josef Dick,et al. The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets , 2006, Numerische Mathematik.
[3] Friedrich Pillichshammer,et al. Polynomial Lattice Point Sets , 2012 .
[4] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[5] F. J. Hickernell. What Affects the Accuracy of Quasi-Monte Carlo Quadrature? , 2000 .
[6] Arpit A. Almal,et al. Lifting the Curse of Dimensionality , 2007 .
[7] Josef Dick,et al. Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..
[8] Peter Kritzer,et al. Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.
[9] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[10] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[11] Dirk Nuyens,et al. Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.
[12] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[13] Dirk Nuyens,et al. A Component-by-Component Construction for the Trigonometric Degree , 2012 .
[14] Wolfgang Ch. Schmid,et al. Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .
[15] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[16] Harald Niederreiter,et al. Vandermonde Nets , 2013, 1308.1215.
[17] R. Cools,et al. A Belgian view on lattice rules , 2008 .
[18] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[19] Grzegorz W. Wasilkowski. On tractability of linear tensor product problems for ∞∞-variate classes of functions , 2013, J. Complex..
[20] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[21] E. Novak,et al. Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .
[22] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[23] Dirk Nuyens,et al. Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.
[24] Dirk Nuyens. Fast construction of good lattice rules , 2007 .
[25] F. J. Hickernell. Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .
[26] Frances Y. Kuo,et al. Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..
[27] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[28] Henryk Wozniakowski,et al. Multivariate integration of infinitely many times differentiable functions in weighted Korobov spaces , 2013, Math. Comput..
[29] Harald Niederreiter,et al. Digital Nets and Coding Theory , 2004 .
[30] Josef Dick,et al. Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..
[31] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[32] Henryk Wozniakowski,et al. Exponential convergence and tractability of multivariate integration for Korobov spaces , 2011, Math. Comput..
[33] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[34] Henryk Woźniakowski. Tractability of Multivariate Integration for Weighted Korobov Spaces: My 15 Year Partnership with Ian Sloan , 2009 .
[35] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[36] N. Fine. On the Walsh functions , 1949 .
[37] Frances Y. Kuo,et al. Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.
[38] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[39] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[40] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[41] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[42] Josef Dick,et al. Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..
[43] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[44] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[45] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[46] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[47] Frances Y. Kuo,et al. Lifting the Curse of Dimensionality , 2005 .
[48] Dirk Nuyens. Fast construction of a good lattice rule / About the cover , 2005 .
[49] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[50] Frances Y. Kuo,et al. Constructing lattice rules based on weighted degree of exactness and worst case error , 2010, Computing.
[51] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[52] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[53] N M Korobov. SOME PROBLEMS IN THE THEORY OF DIOPHANTINE APPROXIMATION , 1967 .
[54] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[55] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[56] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..