The construction of good lattice rules and polynomial lattice rules

A comprehensive overview of lattice rules and polynomial lattice rules is given for function spaces based on $\ell_p$ semi-norms. Good lattice rules and polynomial lattice rules are defined as those obtaining worst-case errors bounded by the optimal rate of convergence for the function space. The focus is on algebraic rates of convergence $O(N^{-\alpha+\epsilon})$ for $\alpha \ge 1$ and any $\epsilon > 0$, where $\alpha$ is the decay of a series representation of the integrand function. The dependence of the implied constant on the dimension can be controlled by weights which determine the influence of the different dimensions. Different types of weights are discussed. The construction of good lattice rules, and polynomial lattice rules, can be done using the same method for all $1 < p \le \infty$; but the case $p=1$ is special from the construction point of view. For $1 < p \le \infty$ the component-by-component construction and its fast algorithm for different weighted function spaces is then discussed.

[1]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[2]  Josef Dick,et al.  The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets , 2006, Numerische Mathematik.

[3]  Friedrich Pillichshammer,et al.  Polynomial Lattice Point Sets , 2012 .

[4]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[5]  F. J. Hickernell What Affects the Accuracy of Quasi-Monte Carlo Quadrature? , 2000 .

[6]  Arpit A. Almal,et al.  Lifting the Curse of Dimensionality , 2007 .

[7]  Josef Dick,et al.  Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..

[8]  Peter Kritzer,et al.  Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.

[9]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[10]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[11]  Dirk Nuyens,et al.  Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.

[12]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[13]  Dirk Nuyens,et al.  A Component-by-Component Construction for the Trigonometric Degree , 2012 .

[14]  Wolfgang Ch. Schmid,et al.  Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .

[15]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[16]  Harald Niederreiter,et al.  Vandermonde Nets , 2013, 1308.1215.

[17]  R. Cools,et al.  A Belgian view on lattice rules , 2008 .

[18]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[19]  Grzegorz W. Wasilkowski On tractability of linear tensor product problems for ∞∞-variate classes of functions , 2013, J. Complex..

[20]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[21]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[22]  Dirk Nuyens,et al.  Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .

[23]  Dirk Nuyens,et al.  Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.

[24]  Dirk Nuyens Fast construction of good lattice rules , 2007 .

[25]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[26]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[27]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[28]  Henryk Wozniakowski,et al.  Multivariate integration of infinitely many times differentiable functions in weighted Korobov spaces , 2013, Math. Comput..

[29]  Harald Niederreiter,et al.  Digital Nets and Coding Theory , 2004 .

[30]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[31]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[32]  Henryk Wozniakowski,et al.  Exponential convergence and tractability of multivariate integration for Korobov spaces , 2011, Math. Comput..

[33]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[34]  Henryk Woźniakowski Tractability of Multivariate Integration for Weighted Korobov Spaces: My 15 Year Partnership with Ian Sloan , 2009 .

[35]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[36]  N. Fine On the Walsh functions , 1949 .

[37]  Frances Y. Kuo,et al.  Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.

[38]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[39]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[40]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[41]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[42]  Josef Dick,et al.  Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..

[43]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[44]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[45]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[46]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[47]  Frances Y. Kuo,et al.  Lifting the Curse of Dimensionality , 2005 .

[48]  Dirk Nuyens Fast construction of a good lattice rule / About the cover , 2005 .

[49]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[50]  Frances Y. Kuo,et al.  Constructing lattice rules based on weighted degree of exactness and worst case error , 2010, Computing.

[51]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[52]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[53]  N M Korobov SOME PROBLEMS IN THE THEORY OF DIOPHANTINE APPROXIMATION , 1967 .

[54]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[55]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[56]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..