A transform approach to Goppa codes

Based on a finite Fourier transform of codewords over the finite field GF (q^{m}) , some basic properties of the class of Goppa codes are presented. A new lower bound on the minimum distance for these codes is derived and applied to a subclass of Goppa codes which is. in fact. equivalent to a subset of punctured reversible cyclic codes. Furthermore. it is shown how the class of Goppa codes can be easily decoded in the context of this transformation by using the Berlekamp-Massey decoding algorithm. Through a slight extension of the procedure, it is also shown how this algorithm may be used m decode alternant codes up to their guaranteed error-correction capability.

[1]  David M. Mandelbaum A method for decoding of generalized Goppa codes (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[2]  Kenneth K. Tzeng,et al.  Characterization theorems for extending Goppa codes to cyclic codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[3]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[4]  Hermann J. Helgert Srivastava codes , 1972, IEEE Trans. Inf. Theory.

[5]  Richard E. Blahut Transform Techniques for Error Control Codes , 1979, IBM J. Res. Dev..

[6]  S. Winograd,et al.  A new approach to error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[7]  Andrew M. Odlyzko,et al.  A new theorem about the Mattson-Solomon polynomial, and some applications , 1974, IEEE Trans. Inf. Theory.

[8]  Kenneth K. Tzeng,et al.  On extending Goppa codes to cyclic codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[9]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[10]  G. Solomon,et al.  A New Treatment of Bose-Chaudhuri Codes , 1961 .

[11]  Hermann J. Helgert Decoding of alternant codes (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[12]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[13]  David M. Mandelbaum On the derivation of Goppa codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[14]  Masao Kasahara,et al.  Further results on Goppa codes and their applications to constructing efficient binary codes , 1976, IEEE Trans. Inf. Theory.

[15]  Nicholas J. Patterson,et al.  The algebraic decoding of Goppa codes , 1975, IEEE Trans. Inf. Theory.

[16]  Robert T. Chien,et al.  Algebraic generalization of BCH-Goppa-Helgert codes , 1975, IEEE Trans. Inf. Theory.

[17]  Elwyn R. Berlekamp,et al.  On decoding binary Bose-Chadhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.

[18]  Herbert O. Burton Inversionless decoding of binary BCH codes , 1971, IEEE Trans. Inf. Theory.

[19]  Dilip V. Sarwate On the complexity of decoding Goppa codes (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[20]  Elwyn R. Berlekamp,et al.  Goppa Codes , 2022 .

[21]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[22]  Charles T. Retter Decoding Goppa codes with a BCH decoder (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[23]  Jean Conan,et al.  A [55, 16, 19] binary Goppa code , 1984, IEEE Trans. Inf. Theory.

[24]  Dilip V. Sarwate,et al.  Decoding of Alternant Codes , 1976 .

[25]  E. Berlekamp,et al.  Extended double-error-correcting binary Goppa codes are cyclic (Corresp.) , 1973, IEEE Trans. Inf. Theory.