Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer.

[1]  J. Brennan,et al.  Entrapment of Src protein tyrosine kinase in sugar-modified silica. , 2004, Analytical chemistry.

[2]  Yingfu Li,et al.  Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. , 2004, Chemistry.

[3]  M. Palcic,et al.  Frontal affinity chromatography coupled to mass spectrometry for screening mixtures of enzyme inhibitors. , 2001, Analytical biochemistry.

[4]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[5]  E. Gabellieri,et al.  Purification, stability and kinetic properties of highly purified adenosine deaminase from Bacillus cereus NCIB 8122. , 1986, Biochimica et biophysica acta.

[6]  Razvan Nutiu,et al.  A DNA-protein nanoengine for "on-demand" release and precise delivery of molecules. , 2005, Angewandte Chemie.

[7]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Razvan Nutiu,et al.  In vitro selection of structure-switching signaling aptamers. , 2005, Angewandte Chemie.

[9]  Iqbal Gill,et al.  Bio-doped Nanocomposite Polymers: Sol-Gel Bioencapsulates , 2001 .

[10]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[11]  Yingfu Li,et al.  Structure-switching signaling aptamers. , 2003, Journal of the American Chemical Society.

[12]  †‡§ and Iqbal Gill,et al.  Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol−Gel Polymers: An Efficient and Generic Approach , 1998 .

[13]  John D Brennan,et al.  Screening of inhibitors using enzymes entrapped in sol-gel-derived materials. , 2003, Analytical chemistry.

[14]  M. Héritier,et al.  LETTER TO THE EDITOR: Confined field induced density waves in unconventional superconductors , 2003 .

[15]  J. Brennan,et al.  Ion sensing and inhibition studies using the transmembrane ion channel peptide gramicidin A entrapped in sol-gel-derived silica. , 2003, Analytical chemistry.

[16]  D. S. Hage,et al.  Antibody immobilization to high-performance liquid chromatography supports. Characterization of maximum loading capacity for intact immunoglobulin G and Fab fragments. , 2000, Journal of chromatography. A.

[17]  J. Brennan,et al.  Coupled enzyme reaction microarrays based on pin-printing of sol–gel derived biomaterials , 2003 .

[18]  Nadine H. Elowe,et al.  Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol-gel-derived silica. , 2004, Journal of the American Chemical Society.

[19]  J. Brennan,et al.  Entrapment of highly active membrane-bound receptors in macroporous Sol-Gel derived silica. , 2004, Analytical chemistry.

[20]  R. Agarwal Inhibitors of adenosine deaminase. , 1982, Pharmacology & therapeutics.

[21]  John D. Brennan,et al.  Properties and applications of proteins encapsulated within sol–gel derived materials , 2002 .

[22]  B. Dave,et al.  Enzymatic Conversion of Carbon Dioxide to Methanol: Enhanced Methanol Production in Silica Sol−Gel Matrices , 1999 .

[23]  J. Brennan,et al.  Inhibitor screening using immobilized enzyme reactor chromatography/mass spectrometry. , 2005, Analytical chemistry.

[24]  Razvan Nutiu,et al.  Aptamers with fluorescence-signaling properties. , 2005, Methods.

[25]  John D Brennan,et al.  Nanovolume kinase inhibition assay using a sol-gel-derived multicomponent microarray. , 2005, Analytical chemistry.

[26]  D. Schriemer Biosensor alternative: frontal affinity chromatography. , 2004, Analytical chemistry.

[27]  Razvan Nutiu,et al.  Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. , 2005, Analytical chemistry.

[28]  A D Ellington,et al.  Aptamers as therapeutic and diagnostic reagents: problems and prospects. , 1997, Current opinion in chemical biology.

[29]  J. Luong,et al.  Enzyme or protein immobilization techniques for applications in biosensor design , 1995 .

[30]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[31]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[32]  J. Brennan,et al.  Capillary-scale frontal affinity chromatography/MALDI tandem mass spectrometry using protein-doped monolithic silica columns. , 2005, Analytical chemistry.

[33]  Razvan Nutiu,et al.  Signaling Aptamers for Monitoring Enzymatic Activity and for Inhibitor Screening , 2004, Chembiochem : a European journal of chemical biology.

[34]  D. S. Hage,et al.  Affinity monoliths for ultrafast immunoextraction. , 2005, Analytical chemistry.

[35]  J. Brennan,et al.  Capillary-scale monolithic immunoaffinity columns for immunoextraction with in-line laser-induced fluorescence detection. , 2005, Analytical chemistry.