Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments

Abstract We propose a probabilistic version of the Markowitz portfolio problem with proportional transaction costs. We derive equivalent convex reformulations, and analyze their computational efficiency for solving large (up to 2000 securities) portfolio problems. There is a great disparity in the solution times. The time differential between formulations can reach several orders of magnitude for the largest instances. The second-order cone formulation in which the number of quadratic terms is invariant to the number of assets is the most efficient.

[1]  Hans Kellerer,et al.  Selecting Portfolios with Fixed Costs and Minimum Transaction Lots , 2000, Ann. Oper. Res..

[2]  Xinfeng Zhou,et al.  Application of robust statistics to asset allocation models , 2006 .

[3]  Gautam Mitra,et al.  Scenario generation for nancial modelling : Desirable properties and a case study , 2009 .

[4]  Sunil Kumar,et al.  MULTIDIMENSIONAL PORTFOLIO OPTIMIZATION WITH PROPORTIONAL TRANSACTION COSTS , 2006 .

[5]  古橋 勇作 金融市場における最新情報技術:5. High Frequency Trading,ビッグデータ分析を支えるIT -日本の金融業界におけるGPU コンピューティング- , 2012 .

[6]  B. Dumas,et al.  An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs , 1991 .

[7]  Barry W. Johnson Algorithmic trading & DMA : an introduction to direct access trading strategies , 2010 .

[8]  Gregory Connor,et al.  Factor Models of Asset Returns , 2009 .

[9]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[10]  Bruno Biais,et al.  High Frequency Trading , 2012 .

[11]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[12]  Stephen P. Boyd,et al.  Portfolio optimization with linear and fixed transaction costs , 2007, Ann. Oper. Res..

[13]  A. Roy SAFETY-FIRST AND HOLDING OF ASSETS , 1952 .

[14]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[15]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[16]  Harry M. Markowitz,et al.  Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions , 2005, Oper. Res..

[17]  Miguel A. Lejeune,et al.  A VaR Black–Litterman model for the construction of absolute return fund-of-funds , 2011 .

[18]  A. Ruszczynski,et al.  Portfolio optimization with stochastic dominance constraints , 2006 .

[19]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[20]  Stan Uryasev,et al.  Conditional value-at-risk: optimization algorithms and applications , 2000, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[21]  S. Kataoka A Stochastic Programming Model , 1963 .

[22]  Robert A. Stubbs,et al.  Incorporating estimation errors into portfolio selection: Robust portfolio construction , 2006 .

[23]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[24]  A. Roy Safety first and the holding of assetts , 1952 .

[25]  Rüdiger Schultz,et al.  Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse , 2006, Math. Program..

[26]  P. Bonami,et al.  An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints , 2009 .

[27]  H. Konno,et al.  A FAST ALGORITHM FOR SOLVING LARGE SCALE MEAN-VARIANCE MODELS BY COMPACT FACTORIZATION OF COVARIANCE MATRICES , 1992 .

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[30]  John Matatko,et al.  Estimation risk and optimal portfolio choice , 1980 .

[31]  David N. Nawrocki A Brief History of Downside Risk Measures , 1999 .