Structure, location and interactions of G‐quadruplexes

Four‐stranded G‐rich DNA structures called G‐quadruplexes have been the subject of increasing interest recently. Experimental and computational techniques have been used to implicate them in important biological processes such as transcription and translation. In this minireview, I discuss how they form, what structures they adopt and with what stability. I then discuss the computational approaches used to predict them on a genomic scale and how the information derived can be combined with experiments to understand their biological functions. Other minireviews in this series deal with G‐quadruplex nucleic acids and human disease [Wu Y & Brosh RM Jr (2010) FEBS J] and making sense of G‐quadruplex and i‐motif function in oncogene promoters [Brooks TA et al. (2010) FEBS J].

[1]  Jan Postberg,et al.  Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo , 2005, Nature Structural &Molecular Biology.

[2]  J. Mergny,et al.  Fluorescence Resonance Energy Transfer as a Probe for G‐Quartet Formation by a Telomeric Repeat , 2001, Chembiochem : a European journal of chemical biology.

[3]  Shankar Balasubramanian,et al.  An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. , 2007, Nature chemical biology.

[4]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[5]  Danzhou Yang,et al.  Polymorphism of human telomeric quadruplex structures. , 2008, Biochimie.

[6]  Dinshaw J. Patel,et al.  Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics , 2007, Nucleic acids research.

[7]  D. Patel Tetrads through interdigitation , 1993, Nature.

[8]  Michael Fry,et al.  Tetraplex DNA and its interacting proteins. , 2007, Frontiers in bioscience : a journal and virtual library.

[9]  J. Vesenka,et al.  A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. , 1995, Nucleic acids research.

[10]  V. Scaria,et al.  Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif. , 2008, RNA.

[11]  Robert M. Henderson,et al.  Direct visualization of G-quadruplexes in DNA using atomic force microscopy , 2009, Nucleic acids research.

[12]  Shankar Balasubramanian,et al.  Prevalence of quadruplexes in the human genome , 2005, Nucleic acids research.

[13]  A. Phan,et al.  Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution , 2006, Nucleic acids research.

[14]  Laurence H. Hurley,et al.  Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. , 2008, Biochimie.

[15]  G. Parkinson,et al.  The structure of telomeric DNA. , 2003, Current opinion in structural biology.

[16]  E. Blackburn,et al.  Structure and function of telomeres , 1991, Nature.

[17]  A. Phan,et al.  Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. , 2002, Nucleic acids research.

[18]  Han Min Wong,et al.  Stable G-quadruplexes are found outside nucleosome-bound regions. , 2009, Molecular bioSystems.

[19]  Oliver Stegle,et al.  A Toolbox for Predicting G-Quadruplex Formation and Stability , 2010, Journal of nucleic acids.

[20]  Stephen Neidle,et al.  A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. , 2006, Biochemistry.

[21]  Markus Wieland,et al.  RNA quadruplex-based modulation of gene expression. , 2007, Chemistry & biology.

[22]  Sarah W. Burge,et al.  Quadruplex DNA: sequence, topology and structure , 2006, Nucleic acids research.

[23]  N. Maizels,et al.  Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. , 2004, Genes & development.

[24]  F. Johnson,et al.  Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae , 2007, Nucleic acids research.

[25]  S. Neidle,et al.  Highly prevalent putative quadruplex sequence motifs in human DNA , 2005, Nucleic acids research.

[26]  S. Tavaré,et al.  Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression , 2009, Nucleic acids research.

[27]  J. Huppert,et al.  Hunting G-quadruplexes. , 2008, Biochimie.

[28]  Yu-hua Hao,et al.  Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA , 2009, Nucleic acids research.

[29]  A. Lane,et al.  Stability and kinetics of G-quadruplex structures , 2008, Nucleic acids research.

[30]  L. Hurley,et al.  Making sense of G‐quadruplex and i‐motif functions in oncogene promoters , 2010, The FEBS journal.

[31]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[32]  Sarah W. Burge,et al.  Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. , 2007, Journal of the American Chemical Society.

[33]  G. Barone,et al.  Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements. , 2004, Biochemistry.

[34]  V A Zakian,et al.  Structure and function of telomeres. , 1989, Annual review of genetics.

[35]  Shankar Balasubramanian,et al.  A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. , 2008, Biochemistry.

[36]  Shankar Balasubramanian,et al.  G-quadruplexes in promoters throughout the human genome , 2006, Nucleic acids research.

[37]  S. Balasubramanian,et al.  Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene c-kit. , 2007, Journal of the American Chemical Society.

[38]  Alan K Todd,et al.  Bioinformatics approaches to quadruplex sequence location. , 2007, Methods.

[39]  C. Price Telomere structure and function. , 1993, Indian journal of biochemistry & biophysics.

[40]  J. Huppert Thermodynamic prediction of RNA-DNA duplex-forming regions in the human genome. , 2008, Molecular bioSystems.

[41]  Julian Leon Huppert,et al.  G-quadruplexes: the beginning and end of UTRs , 2008, Nucleic acids research.

[42]  Oliver Stegle,et al.  Predicting and understanding the stability of G-quadruplexes , 2009, Bioinform..

[43]  D. Patel,et al.  Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. , 1993, Structure.

[44]  L. Hurley,et al.  The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. , 2009, Journal of medicinal chemistry.

[45]  I Berger,et al.  In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  N. Sugimoto,et al.  Molecular crowding regulates the structural switch of the DNA G-quadruplex. , 2002, Biochemistry.

[47]  D. Bearss,et al.  Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  N. Maizels,et al.  Gene function correlates with potential for G4 DNA formation in the human genome , 2006, Nucleic acids research.

[49]  L. Hurley,et al.  The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. , 2004, Journal of the American Chemical Society.

[50]  A. Phan Human telomeric G‐quadruplex: structures of DNA and RNA sequences , 2010, The FEBS journal.

[51]  Jean-Louis Mergny,et al.  Guanines are a quartet's best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes , 2007, Nucleic acids research.

[52]  Stephen Neidle,et al.  Putative DNA quadruplex formation within the human c-kit oncogene. , 2005, Journal of the American Chemical Society.

[53]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Jean-Louis Mergny,et al.  Following G‐quartet formation by UV‐spectroscopy , 1998, FEBS letters.

[55]  Julian Leon Huppert,et al.  Four-Stranded Nucleic Acids: Structure, Function and Targeting of G-Quadruplexes , 2008 .

[56]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[57]  Stephen Neidle,et al.  Loop-length-dependent folding of G-quadruplexes. , 2004, Journal of the American Chemical Society.