Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas

A state-of-the-art review is given of research by computing physics methods on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations than a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamic equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic and heat-conducting plasmas. The application of subgrid-scale modeling to study turbulence in the local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.

[1]  Parviz Moin,et al.  Large-eddy simulation of conductive flows at low magnetic Reynolds number , 2004 .

[2]  Jung Yul Yoo,et al.  Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes , 2004 .

[3]  Alexander Loskutov,et al.  Fascination of chaos , 2010 .

[4]  A. Petrosyan,et al.  Assessment of Subgrid-Scale Models for Decaying Compressible MHD Turbulence , 2008 .

[5]  K. Alvelius,et al.  RANDOM FORCING OF THREE-DIMENSIONAL HOMOGENEOUS TURBULENCE , 1999 .

[6]  L. Weinstein,et al.  The legacy. , 2004, Journal of gerontological nursing.

[7]  G. Zank,et al.  Anisotropic Density Fluctuations in a Nearly Incompressible Hydrodynamic Fluid , 2004 .

[8]  V. Silin Absorption of radiation by turbulent laser plasmas , 1985 .

[9]  John V. Shebalin,et al.  Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.

[10]  W. Matthaeus,et al.  Relaxation processes in a turbulent compressible magnetofluid , 1990 .

[11]  A. Petrosyan,et al.  Forced turbulence in large-eddy simulation of compressible magnetohydrodynamic turbulence , 2010 .

[12]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[13]  Lawrence Sirovich,et al.  New Perspectives in Turbulence , 2011 .

[14]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[15]  Parviz Moin,et al.  A Recommended Modification to the Dynamic Two-Parameter Mixed Subgrid Scale Model , 2001 .

[16]  M. Norman,et al.  Simulating supersonic turbulence in magnetized molecular clouds , 2009, 0908.0378.

[17]  S. Boldyrev,et al.  On the energy spectrum of strong magnetohydrodynamic turbulence , 2012, 1209.2011.

[18]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[19]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[20]  S. Pope,et al.  A deterministic forcing scheme for direct numerical simulations of turbulence , 1998 .

[21]  Axel Brandenburg,et al.  Inertial range scaling in numerical turbulence with hyperviscosity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  V. Uchaikin Fractional phenomenology of cosmic ray anomalous diffusion , 2013 .

[23]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[24]  The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[25]  T. A. Zang,et al.  Toward the large-eddy simulation of compressible turbulent flows , 1990, Journal of Fluid Mechanics.

[26]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .

[27]  J. Stone,et al.  Nonlinear Stability, Hydrodynamical Turbulence, and Transport in Disks , 1996 .

[28]  Numerical Study of Compressible Magnetohydrodynamic Turbulence in Two Dimensions , 2003, astro-ph/0305165.

[29]  Lev M. Zelenyi,et al.  Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features , 2011 .

[30]  A. Ruzmaikin Magnetic fields of galaxies , 1988 .

[31]  The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence , 2000, astro-ph/0006186.

[32]  K. Rädler,et al.  On the theory of the geomagnetic dynamo based on mean field electrodynamics , 1979 .

[33]  T. Kunugi,et al.  Direct numerical simulations of turbulent pipe flow in a transverse magnetic field , 2002 .

[34]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[35]  T. Hatori Kolmogorov-Style Argument for the Decaying Homogeneous MHD Turbulence , 1984 .

[36]  T. A. Zang,et al.  Direct and large-eddy simulations of three-dimensional compressible Navier-Stokes turbulence , 1992 .

[37]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[38]  D. Sokoloff,et al.  Large- and small-scale interactions and quenching in an alpha2-dynamo. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  G. Zank,et al.  Density Spectrum in the Diffuse Interstellar Medium and Solar Wind , 2004 .

[40]  P D Mininni,et al.  Small-scale structures in three-dimensional magnetohydrodynamic turbulence. , 2006, Physical review letters.

[41]  J. Cordes,et al.  Density power spectrum in the local interstellar medium , 1981, Nature.

[42]  A. Brandenburg,et al.  Kinetic helicity decay in linearly forced turbulence , 2010, 1012.1464.

[43]  D. Sokoloff,et al.  Model of a multiscaled MHD dynamo , 2003 .

[44]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[45]  J. Bhattacharjee,et al.  Computation of Kolmogorov's constant in magnetohydrodynamic turbulence , 1995, chao-dyn/9509001.

[46]  Sabatino Sofia,et al.  A subgrid‐scale resistivity for magnetohydrodynamics , 1994 .

[47]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[48]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[49]  THREE-DIMENSIONAL MODELING OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE IN THE LOCAL INTERSTELLAR MEDIUM , 2008 .

[50]  John Kim,et al.  Turbulent boundary layer control utilizing the Lorentz force , 2000 .

[51]  K. Subramanian,et al.  Astrophysical magnetic field and nonlinear dynamo theory , 2004, astro-ph/0405052.

[52]  A. Gosman,et al.  A comparative study of subgrid scale models in homogeneous isotropic turbulence , 1997 .

[53]  Muller,et al.  Scaling properties of three-dimensional magnetohydrodynamic turbulence , 2000, Physical review letters.

[54]  Shiyi Chen,et al.  Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field , 1996, Journal of Fluid Mechanics.

[55]  G. Glatzmaier,et al.  Compressible convection in a rotating spherical shell. I - Anelastic equations. II - A linear anelastic model. III - Analytic model for compressible vorticity waves , 1981 .

[56]  A. Petrosyan,et al.  Modeling of compressible magnetohydrodynamic turbulence in electrically and heat conducting fluid using large eddy simulation , 2008 .

[57]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[58]  A. Chernyshov,et al.  Validation of large eddy simulation method for study of flatness and skewness of decaying compressible magnetohydrodynamic turbulence , 2009 .

[59]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[60]  T. A. Zang,et al.  The subgrid‐scale modeling of compressible turbulence , 1987 .

[61]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[62]  V. Klyatskin Integral characteristics: a key to understanding structure formation in stochastic dynamic systems , 2011 .

[63]  W. I. Axford THE ACCELERATION OF COSMIC RAYS BY SHOCK WAVES , 1981 .

[64]  G. S. Patterson,et al.  Intermittency effects in a numerical simulation of stationary three-dimensional turbulence , 1978, Journal of Fluid Mechanics.

[65]  A. Petrosyan,et al.  Subgrid-scale modelling in large-eddy simulations of compressible magnetohydrodynamic turbulence , 2006 .

[66]  D. Biskamp,et al.  The Evolving Phenomenological View on Magnetohydrodynamic Turbulence , 2003 .

[67]  J. Chasnov Simulation of the Kolmogorov inertial subrange using an improved subgrid model , 1991 .

[68]  K. V. Karelsky,et al.  Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence , 2007 .

[69]  A. Petrosyan,et al.  Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid , 2006 .

[70]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[71]  Shankar Mahalingam,et al.  Deterministic forcing of homogeneous, isotropic turbulence , 1994 .

[72]  Y. Fan,et al.  Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones , 1999 .

[73]  John Leask Lumley,et al.  Simulation and modeling of turbulent flows , 1996 .

[74]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[75]  A. Yoshizawa Subgrid modeling for magnetohydrodynamic turbulent shear flows , 1987 .

[76]  Daniele Carati,et al.  Magnetohydrodynamic turbulence at moderate magnetic Reynolds number , 2004, Journal of Fluid Mechanics.

[77]  Three-dimensional simulations of turbulent spectra in the local interstellar medium , 2007 .

[78]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[79]  A. Lazarian,et al.  Compressible Magnetohydrodynamic Turbulence : mode coupling , scaling relations , anisotropy , viscosity-damped regime , and astrophysical implications , 2003 .

[80]  Stanislav Boldyrev,et al.  Scaling Relations of Supersonic Turbulence in Star-forming Molecular Clouds , 2001, astro-ph/0111345.

[81]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[82]  Daniel J. Price,et al.  Algorithmic comparisons of decaying, isothermal, supersonic turbulence , 2008, 0810.4599.

[83]  Ugo Piomelli,et al.  Application of the dynamic subgrid‐scale model to axisymmetric transitional boundary layer at high speed , 1994 .

[84]  L. Zelenyi,et al.  Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics , 2004 .

[85]  Thomas M. Eidson,et al.  Numerical simulation of the turbulent Rayleigh–Bénard problem using subgrid modelling , 1985, Journal of Fluid Mechanics.

[86]  D. A. Roberts,et al.  Magnetohydrodynamic Turbulence in the Solar Wind , 1995 .

[87]  W. Matthaeus,et al.  SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING , 2011 .

[88]  Oleg A. Pokhotelov,et al.  Generation of large-scale eddies and zonal winds in planetary atmospheres , 2008 .

[89]  V. Tsytovich Reviews of Topical Problems: Statistical Acceleration of Particles in a Turbulent Plasma , 1966 .

[90]  B. Geurts,et al.  Realizability conditions for the turbulent stress tensor in large-eddy simulation , 1994, Journal of Fluid Mechanics.

[91]  Changhoon Lee,et al.  Control of the viscous sublayer for drag reduction , 2002 .

[92]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[93]  B. M. Smirnov,et al.  Electrical cycle in the Earth's atmosphere , 2014 .

[94]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[95]  A. W. Vreman,et al.  Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer , 1995 .

[96]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[97]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[98]  Spectral energy dynamics in magnetohydrodynamic turbulence. , 2005, Physical review letters.

[99]  F. Hamba,et al.  A turbulence model for magnetohydrodynamic plasmas , 2008 .

[100]  Eckart Marsch,et al.  Physics of the Inner Heliosphere II , 1990 .

[101]  S. V. Bulanov Laser ion acceleration for hadron therapy , 2014, 2014 International Conference Laser Optics.

[102]  D. Gaitonde,et al.  Magnetic Reynolds number effects in compressible magnetohydrodynamic turbulence , 2004 .

[103]  Max F. Mellikan An Introductory Essay , 1968, International Organization.

[104]  Daniele Carati,et al.  Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence , 2002 .

[105]  G. Kowal,et al.  NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS , 2009, 0903.2052.

[106]  F. V. Dolzhanskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Stability and vortex structures of quasi-two-dimensional shear flows , 1990 .

[107]  M. Maclow Turbulence in the Interstellar Medium , 2004 .

[108]  D. Lamb,et al.  Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. , 2007, Physical review letters.

[109]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[110]  Oleg V. Vasilyev,et al.  Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence , 2008, Journal of Fluid Mechanics.

[111]  K. V. Koshel,et al.  Chaotic advection in the ocean , 2006 .

[112]  P. Dmitruk,et al.  Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas , 2004 .

[113]  Parviz Moin,et al.  On the representation of backscatter in dynamic localization models , 1995 .

[114]  Charles Meneveau,et al.  Linear forcing in numerical simulations of isotropic turbulence , 2005 .

[115]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[116]  O. Agullo,et al.  Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling , 2001 .

[117]  Shiyi Chen,et al.  High‐resolution turbulent simulations using the Connection Machine‐2 , 1992 .

[118]  P. Shukla,et al.  Nonlinear aspects of quantum plasma physics , 2009, 0906.4051.

[119]  M. Marov,et al.  The effect of spirality on the evolution of turbulence in the solar protoplanetary cloud , 2007 .

[120]  U. Piomelli,et al.  Subgrid-Scale Models for Compressible Large-Eddy Simulations , 2000, Theoretical and Computational Fluid Dynamics.

[121]  F. Spanier,et al.  Turbulence evolution in MHD plasmas , 2013, Journal of Plasma Physics.

[122]  A. Kolmogorov Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers , 1967, Uspekhi Fizicheskih Nauk.

[123]  U. Torkelsson,et al.  Magnetohydrodynamic instabilities and turbulence in accretion disks , 1996 .

[124]  Reconstruction of streamline topology, and percolation models of turbulent transport , 2013 .

[125]  Stephen B. Pope,et al.  An examination of forcing in direct numerical simulations of turbulence , 1988 .

[126]  Novel developments in subgrid-scale modeling of space plasma: weakly compressible turbulence in the local interstellar medium , 2010 .

[127]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[128]  M. V. Kalashnik,et al.  Nontrivial features in the hydrodynamics of seawater and other stratified solutions , 2012 .

[129]  Pierre Sagaut,et al.  On the radiated noise computed by large-eddy simulation , 2001 .

[130]  Mean magnetic field renormalization and Kolmogorov’s energy spectrum in magnetohydrodynamic turbulence , 1998, chao-dyn/9803021.

[131]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[132]  W. Matthaeus,et al.  Nearly incompressible fluids. II - Magnetohydrodynamics, turbulence, and waves , 1993 .

[133]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[134]  Jerrold E. Marsden,et al.  Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence , 2003 .

[135]  J. Vial,et al.  Turbulence in the Solar Atmosphere and Solar Wind , 2010 .

[136]  R. Sagdeev,et al.  The Large Scale Stability and Self-organization in Homogeneous Turbulent Shear Flow , 1994 .

[137]  Chen,et al.  Reynolds number dependence of isotropic Navier-Stokes turbulence. , 1993, Physical review letters.

[138]  Jungyeon Cho,et al.  Generation of compressible modes in MHD turbulence , 2003 .

[139]  Pierre Sagaut,et al.  Discrete filters for large eddy simulation , 1999 .

[140]  Dieter Biskamp,et al.  Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence , 2000 .

[141]  W. Dobler,et al.  Hydromagnetic turbulence in computer simulations , 2001, astro-ph/0111569.

[142]  Efficiency of Scale-Similarity Model for Study of Forced Compressible Magnetohydrodynamic Turbulence , 2012 .

[143]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[144]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[145]  Axel Brandenburg,et al.  Computational aspects of astrophysical MHD and turbulence , 2001, Advances in Nonlinear Dynamos.

[146]  W. Matthaeus,et al.  Density Fluctuation Spectra in Magnetohydrodynamic Turbulence a Recurrent but Theoretically Unexplained Observation Has a Poisson Equation for P* Results from Taking the Diver- Gence of (la) and Using (lb): V2(p*/po)----v. [¾-v¾-b' Vb/4r@bulletpo ] (2) , 2022 .

[147]  G. Vahala,et al.  Aspects of subgrid modelling and large-eddy simulation of magnetohydrodynamic turbulence , 1991, Journal of Plasma Physics.

[148]  Lagrangian structure functions in hydrodynamic turbulence , 2008 .

[149]  P. Morrissey,et al.  Using adiabatic coupling techniques in atom-chip waveguide structures , 2010, 1001.1331.

[150]  The residual energy in freely decaying magnetohydrodynamic turbulence. Invited paper , 2004 .

[151]  A. Bykov,et al.  Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods) , 1993 .

[152]  V. Carbone,et al.  An introduction to fluid and MHD turbulence for astrophysical flows: Theory, observational and numerical data, and modeling , 2009 .

[153]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[154]  Subgrid-scale modeling of compressible magnetohydrodynamic turbulence in heat-conducting plasma , 2006 .

[155]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[156]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[157]  G. Zank Interaction of the solar wind with the local interstellar medium: a theoretical perspective , 1999 .

[158]  Generation of small-scale structures in well-developed turbulence , 2006, physics/0612131.

[159]  W. Matthaeus,et al.  The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves , 1991 .

[160]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[161]  Paul R. Woodward,et al.  A numerical study of supersonic turbulence , 1992 .

[162]  Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium , 2005 .

[163]  S. Sridhar,et al.  Magnetohydrodynamic turbulence in a strongly magnetised plasma , 2009, 0911.2581.

[164]  M. Goldstein Magnetospheric physics: Turbulence on a small scale , 2005, Nature.

[165]  Haecheon Choi,et al.  Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number , 2001, Journal of Fluid Mechanics.