Reconfiguration of a smart surface using heteroclinic connections

A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems.

[1]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[2]  E. Hawkesa,et al.  Programmable matter by folding , 2010 .

[3]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[4]  Ming Xu,et al.  Structure-Preserving Stabilization for Hamiltonian System and its Applications in Solar Sail , 2009 .

[5]  Colin R. McInnes,et al.  Reconfiguration of a four-bar mechanism using phase space connections , 2016 .

[6]  Tad Hogg,et al.  Controlling smart matter , 1996, cond-mat/9611024.

[7]  Rigoberto Burgueño,et al.  Elastic postbuckling response of axially-loaded cylindrical shells with seeded geometric imperfection design , 2015 .

[8]  A. Lendlein,et al.  Reversible Bidirectional Shape‐Memory Polymers , 2013, Advanced materials.

[9]  Alison B. Flatau,et al.  Dynamic smart material and structural systems , 2002 .

[10]  Jae-Hung Han,et al.  Wrinkling control of inflatable booms using shape memory alloy wires , 2007 .

[11]  Jonathan B. Hopkins,et al.  An Actively Controlled Shape-Morphing Compliant Microarchitectured Material , 2016 .

[12]  C. McInnes,et al.  Reconfiguring smart structures using approximate heteroclinic connections , 2015 .

[13]  Tad Hogg,et al.  Controls for unstable structures , 1997, Smart Structures.

[14]  Jinxin Zhang,et al.  Self-Powered Analogue Smart Skin. , 2016, ACS nano.

[15]  Yuefeng Cui,et al.  Highly multistable composite surfaces , 2015 .

[16]  Fabrizio Scarpa,et al.  Evaluation of hexagonal chiral structure for morphing airfoil concept , 2005 .

[17]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[18]  Carmel Majidi,et al.  Nonlinear geometric effects in mechanical bistable morphing structures. , 2012, Physical review letters.

[19]  Andrea Mazzone,et al.  The HoverMesh: a deformable structure based on vacuum cells: new advances in the research of tangible user interfaces , 2004, ACE '04.

[20]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[21]  C. McInnes,et al.  Using instability to reconfigure smart structures in a spring-mass model , 2017 .

[22]  F. Scarpa,et al.  Shape morphing Kirigami mechanical metamaterials , 2016, Scientific Reports.

[23]  Larry L. Howell,et al.  Handbook of compliant mechanisms , 2013 .

[24]  Sergio Pellegrino,et al.  Compliant multistable structural elements , 2008 .

[25]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[26]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[27]  Ming Xu,et al.  Application of Hamiltonian structure-preserving control to formation flying on a J2-perturbed mean circular orbit , 2012 .

[28]  Julien Bourgeois,et al.  Distributed part differentiation in a smart surface , 2012 .

[29]  S. Hurlebaus,et al.  Smart structure dynamics , 2006 .

[30]  Colin R. McInnes,et al.  Reconfiguring smart structures using phase space connections , 2008 .

[31]  C. McInnes,et al.  Reconfiguring smart structures using approximate heteroclinic connections in a spring-mass model , 2015 .

[32]  Jun Wu,et al.  An integrated approach to shape and laminate stacking sequence optimization of free-form FRP shells , 2006 .

[33]  Larry L. Howell,et al.  Handbook of Compliant Mechanisms: Howell/Handbook , 2013 .

[34]  Marc Behl,et al.  Temperature-memory polymer actuators , 2013, Proceedings of the National Academy of Sciences.

[35]  Andres F. Arrieta,et al.  Double-walled corrugated structure for bending-stiff anisotropic morphing skins , 2015 .

[36]  Horst Baier,et al.  Design of a Morphing Skin Using Flexible Fiber Composites for Space-Reconfigurable Reflectors , 2013 .

[37]  S D Guest,et al.  Deployable membranes designed from folding tree leaves , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .