Sparse Control of Hegselmann-Krause Models: Black Hole and Declustering

This paper elaborates control strategies to prevent clustering effects in opinion formation models. This is the exact opposite of numerous situations encountered in the literature where, on the contrary, one seeks controls promoting consensus. In order to promote declustering, instead of using the classical variance that does not capture well the phenomenon of dispersion, we introduce an entropy-type functional that is adapted to measuring pairwise distances between agents. We then focus on a Hegselmann-Krause-type system and design declustering sparse controls both in finite-dimensional and kinetic models. We provide general conditions characterizing whether clustering can be avoided as function of the initial data. Such results include the description of black holes (where complete collapse to consensus is not avoidable), safety zones (where the control can keep the system far from clustering), basins of attraction (attractive zones around the clustering set) and collapse prevention (when convergence to the clustering set can be avoided).

[1]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[2]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[3]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[4]  Benedetto Piccoli,et al.  Interaction network, state space, and control in social dynamics , 2016, 1607.00397.

[5]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[6]  Fabio S. Priuli,et al.  Linear-Quadratic N-person and Mean-Field Games with Ergodic Cost , 2014, SIAM J. Control. Optim..

[7]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[8]  A. Propoi On the Theory of Max-Min , 1977 .

[9]  Benedetto Piccoli,et al.  Optimal control of a collective migration model , 2015, 1503.05168.

[10]  Nassim Nicholas Taleb,et al.  The Black Swan: The Impact of the Highly Improbable , 2007 .

[11]  Nicolaas J. Vriend,et al.  Learning to Be Loyal. A Study of the Marseille Fish Market , 2000 .

[12]  B. Piccoli,et al.  Mean-field sparse Jurdjevic-Quinn control , 2017, 1701.01316.

[13]  Andrew R. Teel,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 2022 .

[14]  Maxi San Miguel,et al.  Social and strategic imitation: the way to consensus , 2012, Scientific Reports.

[15]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[16]  Alain Sarlette,et al.  Coordinated Motion Design on Lie Groups , 2008, IEEE Transactions on Automatic Control.

[17]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[18]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .

[19]  Nicola Bellomo,et al.  On the dynamics of social conflicts: looking for the Black Swan , 2012, ArXiv.

[20]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[21]  Mattia Zanella,et al.  Opinion modeling on social media and marketing aspects , 2018, Physical review. E.

[22]  Naomi Ehrich Leonard Multi-agent system dynamics: Bifurcation and behavior of animal groups , 2014, Annu. Rev. Control..

[23]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[24]  M. Mew A black swan? , 2009, BDJ.

[25]  Emmanuel Tr'elat,et al.  Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains , 2012, Journal of the European Mathematical Society.

[26]  Benedetto Piccoli,et al.  Sparse Jurdjevic-Quinn stabilization of dissipative systems , 2017, Autom..

[27]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[28]  Seung-Yeal Ha,et al.  Emergent Behavior of a Cucker-Smale Type Particle Model With Nonlinear Velocity Couplings , 2010, IEEE Transactions on Automatic Control.

[29]  Massimo Fornasier,et al.  Sparse Stabilization and Control of the Cucker-Smale Model , 2012 .

[30]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[31]  Alfio Borzì,et al.  On the control through leadership of the Hegselmann–Krause opinion formation model , 2015 .

[32]  Benedetto Piccoli,et al.  Control to Flocking of the Kinetic Cucker-Smale Model , 2014, SIAM J. Math. Anal..

[33]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[34]  M. Fornasier,et al.  Mean-Field Optimal Control , 2013, 1306.5913.

[35]  Nicola Bellomo,et al.  Stochastic Evolving Differential Games Toward a Systems Theory of Behavioral Social Dynamics , 2015, 1506.05699.

[36]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .

[37]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[38]  Marco Ajmone Marsan,et al.  Towards a mathematical theory of complex socio-economical systems by functional subsystems representation , 2008 .

[39]  Vijay Kumar,et al.  The GRASP Multiple Micro-UAV Testbed , 2010, IEEE Robotics & Automation Magazine.

[40]  Christian A. Yates,et al.  Inherent noise can facilitate coherence in collective swarm motion , 2009, Proceedings of the National Academy of Sciences.

[41]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[42]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[43]  Pedro Elosegui,et al.  Extension of the Cucker-Smale Control Law to Space Flight Formations , 2009 .

[44]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[45]  P. Degond,et al.  Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior , 2007, 0710.4996.

[46]  Lorenzo Pareschi,et al.  Hydrodynamic Models of Preference Formation in Multi-agent Societies , 2019, J. Nonlinear Sci..

[47]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[48]  Shlomo Zilberstein,et al.  Models of Bounded Rationality , 1995 .

[49]  Seung-Yeal Ha,et al.  Complete Cluster Predictability of the Cucker–Smale Flocking Model on the Real Line , 2018, Archive for Rational Mechanics and Analysis.

[50]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[51]  Seung-Yeal Ha,et al.  EMERGENCE OF MULTI-CLUSTER CONFIGURATIONS FROM ATTRACTIVE AND REPULSIVE INTERACTIONS , 2012 .

[52]  Massimo Fornasier,et al.  Sparse Stabilization and Control of Alignment Models , 2012, 1210.5739.

[53]  Seung-Yeal Ha,et al.  How Do Cultural Classes Emerge from Assimilation and Distinction? An Extension of the Cucker-Smale Flocking Model , 2014 .

[54]  Benedetto Piccoli,et al.  Measure Differential Equations , 2017, Archive for Rational Mechanics and Analysis.

[55]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.