Statistical models for deformable templates in image and shape analysis

High dimensional data are more and more frequent in many application fields. It becomes of particular importance to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.

[1]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[2]  Michael I. Miller,et al.  Landmark Matching via Large Deformation Diffeomorphisms on the Sphere , 2004, Journal of Mathematical Imaging and Vision.

[3]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[4]  Stephen R. Marsland,et al.  Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images , 2004, IEEE Transactions on Medical Imaging.

[6]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[7]  D'arcy W. Thompson On Growth and Form , 1945 .

[8]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[9]  Fabrice Gamboa,et al.  Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fourier--Mellin Transform , 2009, SIAM J. Imaging Sci..

[10]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[11]  Fabrice Gamboa,et al.  Semi-parametric estimation of shifts , 2007, 0712.1936.

[12]  Eric Moulines,et al.  Aircraft classification with a low resolution infrared sensor , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[13]  Darryl D. Holm,et al.  Soliton dynamics in computational anatomy , 2004, NeuroImage.

[14]  Jean-Michel Loubes,et al.  Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping , 2009, Journal of Mathematical Imaging and Vision.

[15]  Eric Moulines,et al.  An online learning algorithm for mixture models of deformable templates , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[16]  Jérémie Bigot,et al.  Random Action of Compact Lie Groups and Minimax Estimation of a Mean Pattern , 2012, IEEE Transactions on Information Theory.

[17]  O. Cappé,et al.  On‐line expectation–maximization algorithm for latent data models , 2009 .

[18]  Frédéric J. P. Richard,et al.  Bayesian Technique for Image Classifying Registration , 2012, IEEE Transactions on Image Processing.

[19]  K. Mardia,et al.  A penalized likelihood approach to image warping , 2001 .

[20]  Alain Trouvé,et al.  Bayesian Deformable Models Building via Stochastic Approximation Algorithm: A Convergence Study , 2007 .

[21]  Gregory S Chirikjian,et al.  Deblurring of class-averaged images in single-particle electron microscopy , 2010, Inverse problems.

[22]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Nicholas Ayache,et al.  Mapping the Effects of Aβ 1 - 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields , 2011, MICCAI.

[24]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[25]  Alain Trouvé,et al.  A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces , 2010 .

[26]  Stéphanie Allassonnière,et al.  Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation , 2012, Comput. Stat. Data Anal..

[27]  L. Younes,et al.  Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching , 2004, CVPR 2004.

[28]  Ross Talarico,et al.  M L A , 1997 .

[29]  Guido Gerig,et al.  Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data , 2011, MICCAI.

[30]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[31]  Michael I. Miller,et al.  Large Deformation Diffeomorphic Metric Curve Mapping , 2008, International Journal of Computer Vision.

[32]  Nicholas Ayache,et al.  Schild's Ladder for the Parallel Transport of Deformations in Time Series of Images , 2011, IPMI.

[33]  Frédéric J. P. Richard,et al.  A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences , 2009, Stat. Comput..

[34]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[35]  Jean-Michel Loubes,et al.  Semiparametric estimation of shifts on compact Lie groups for image registration , 2010, Probability Theory and Related Fields.

[36]  Frédéric J. P. Richard,et al.  A classifying registration technique for the estimation of enhancement curves of DCE-CT scan sequences , 2010, Medical Image Anal..

[37]  J'er'emie Bigot,et al.  A deconvolution approach to estimation of a common shape in a shifted curves model , 2008, 0812.3502.

[38]  Jérémie Bigot,et al.  On the consistency of Fr\'echet means in deformable models for curve and image analysis , 2010, 1010.0427.

[39]  Mert R. Sabuncu,et al.  Discovering Modes of an Image Population through Mixture Modeling , 2008, MICCAI.

[40]  Alain Trouvé,et al.  Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images , 2010 .

[41]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[42]  Myriam Vimond,et al.  Efficient estimation for a subclass of shape invariant models , 2010, 1010.0796.

[43]  É. Moulines,et al.  Convergence of a stochastic approximation version of the EM algorithm , 1999 .

[44]  Stephen R. Marsland,et al.  Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms , 2002, BMVC.

[45]  Stanley Durrleman,et al.  Sparse Adaptive Parameterization of Variability in Image Ensembles , 2012, International Journal of Computer Vision.

[46]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[47]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[48]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[49]  Michael I. Miller,et al.  Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes , 2009, NeuroImage.

[50]  M. Miller,et al.  Landmark Matching via Large Deformation Diffeomorphisms on the Sphere , 2004 .

[51]  Kostas Daniilidis,et al.  Rotation recovery from spherical images without correspondences , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.