Additional information decreases the estimated entanglement using the Jaynes principle

We study a particular example considered by Horodecki et al (1999 Phys. Rev. A 59 1799), concerning the statistical inference of quantum entanglement using the Jaynes principle. Assume a Clauser–Horne–Simony–Holt (CHSH) Bell operator, a sum of two operators . Given only an average of the Bell–CHSH operator, we may overestimate entanglement. However, the estimated entanglement is decreased (never increases) when we use the expectation value of the operator X as additional information. A minimum entanglement state is obtained by minimizing the variance of the observable X.

[1]  R. Rossignoli,et al.  Generalized nonadditive entropies and quantum entanglement. , 2002, Physical review letters.

[2]  Carlton M. Caves,et al.  Entanglement purification of unknown quantum states , 2001 .

[3]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[4]  G. Doolen,et al.  Introduction to Quantum Computers , 1998 .

[5]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[6]  R. Rossignoli,et al.  General non-additive entropic forms and the inference of quantum density operators , 2005 .

[7]  Ryszard Horodecki,et al.  Entanglement processing and statistical inference: The Jaynes principle can produce fake entanglement , 1999 .

[8]  Observables suitable for restricting the fidelity to multipartite maximally entangled states , 2002, quant-ph/0510237.

[9]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[12]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[13]  P. Slater Hilbert–Schmidt separability probabilities and noninformativity of priors , 2005, quant-ph/0507203.

[14]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[15]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[16]  Quantum entanglement and the maximum-entropy states from the Jaynes principle , 1999, quant-ph/9903083.

[17]  Funabashi,et al.  Quantum entanglement inferred by the principle of maximum nonadditive entropy , 1999 .

[18]  A. Plastino,et al.  On the inference of entangled states: A maximum-entropy–minimum-norm approach , 2000 .

[19]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.