Additional information decreases the estimated entanglement using the Jaynes principle
暂无分享,去创建一个
[1] R. Rossignoli,et al. Generalized nonadditive entropies and quantum entanglement. , 2002, Physical review letters.
[2] Carlton M. Caves,et al. Entanglement purification of unknown quantum states , 2001 .
[3] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[4] G. Doolen,et al. Introduction to Quantum Computers , 1998 .
[5] Hoi-Kwong Lo,et al. Introduction to Quantum Computation Information , 2002 .
[6] R. Rossignoli,et al. General non-additive entropic forms and the inference of quantum density operators , 2005 .
[7] Ryszard Horodecki,et al. Entanglement processing and statistical inference: The Jaynes principle can produce fake entanglement , 1999 .
[8] Observables suitable for restricting the fidelity to multipartite maximally entangled states , 2002, quant-ph/0510237.
[9] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[10] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[11] Colin P. Williams,et al. Explorations in quantum computing , 1997 .
[12] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[13] P. Slater. Hilbert–Schmidt separability probabilities and noninformativity of priors , 2005, quant-ph/0507203.
[14] A. Galindo,et al. Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.
[15] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[16] Quantum entanglement and the maximum-entropy states from the Jaynes principle , 1999, quant-ph/9903083.
[17] Funabashi,et al. Quantum entanglement inferred by the principle of maximum nonadditive entropy , 1999 .
[18] A. Plastino,et al. On the inference of entangled states: A maximum-entropy–minimum-norm approach , 2000 .
[19] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.