The Path Computation Element (PCE) for MPLS networks and its application to the Internet of Things (IoT). (L'architecture Path Computation Element (PCE) pour les réseaux MPLS et son application à l'internet des objets)

Modern data networks carry a wide variety of traffic such as voice, video, data and other industrial protocols that require guaranteed quality of service. Traffic Engineering (TE) allows for network resource optimization while meeting service level agreement for these sensitive traffics in terms of delays, jitter but also network reliability in case of network element failure. To that end a technology making use of constrained paths using label switching (called MPLS TE) has been developed and widely used in a number of networks. The objective of this thesis is to propose a new architecture model referred to as the Path Computation Element (PCE) along with a number of protocols and algorithms in order to tackle a number of technical challenges. First the PCE architecture is described in terms of functional blocks with its protocols: the signalization protocol called PCEP used between client and servers in charge of computing label switched path in the network, the process of PCE discovery and load balancing. Then a new backward recursive algorithm is specified allowing for the computation of optimal inter-domain tunnels, which involves a series of stateless PCEs. We then introduce a paradigm shift consisting distributing the computation of backup tunnels in the network used by the well-known technology called Fast Reroute. Thanks to this new paradigm, each node independently acts as a PCE computing the back tunnels of all of its neighbors, thus maximizing the degree of sharing of the backup capacity among tunnels that protect independent resources. We conclude this thesis by showing how the PCE architecture can be applied (with adaptations specified in the last two chapt...