On existence and discrepancy of certain digital Niederreiter-Halton sequences
暂无分享,去创建一个
[1] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[2] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[3] Dong-Hyun Kim. On the Joint Distribution ofq-Additive Functions in Residue Classes , 1999 .
[4] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[5] Peter Kritzer,et al. Distribution Properties of Generalized van der Corput-Halton Sequences and their Subsequences , 2009 .
[6] Donald J. Newman,et al. On the number of binary digits in a multiple of three , 1969 .
[7] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[8] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[9] Harald Niederreiter,et al. Generalized $(t,s)$-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series , 1995 .
[10] Roswitha Hofer. On the distribution properties of Niederreiter–Halton sequences , 2009 .
[11] Shu Tezuka,et al. Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .