Layer V pyramidal cells in the adult human cingulate cortex

The anterior and posterior parts of the human cingulate cortex differ in their absolute number of neurons per unit volume, with fewer neurons in the anterior part. To test the hypothesis that lower absolute number and packing density of neurons in the anterior cingulate cortex are associated with an increased complexity in the neuropil compartment, dendritic arborizations of layer V neurons in both cingulate parts were analyzed in a Golgi study. Results show that these neurons in the anterior cingulate cortex have more primary and secondary basal dendrites than those in the posterior cingulate cortex. This establishes an association of a higher complexity of the dendritic arborization in the anterior cingulate cortex with a lower cell number per unit volume and larger neuropil compartment. The significant lower degree of dendritic arborization in the posterior cingulate cortex is accompanied by a higher cell packing density. These structural differences are associated with functional differences between the two parts of the human cingulate cortex.

[1]  A. Riesen,et al.  Evironmental effects on cortical dendritic fields. I. Rearing in the dark. , 1968, Journal of anatomy.

[2]  D. Sholl The organization of the cerebral cortex , 1957 .

[3]  Samuil Michailovič Blinkov,et al.  Das Zentralnervensystem in Zahlen und Tabellen , 1968 .

[4]  Malle Tagamets,et al.  Morphometry of spine‐free nonpyramidal neurons in rabbit auditory cortex , 1984, The Journal of comparative neurology.

[5]  G. A. Kerkut,et al.  6 HT in crab heart. , 1963, Life sciences.

[6]  O. E. Millhouse The Golgi Methods , 1981 .

[7]  T. J. DeVoogd,et al.  Distortions induced in neuronal quantification by camera lucida analysis: Comparisons using a semi-automated data acquisition system , 1981, Journal of Neuroscience Methods.

[8]  K Zilles,et al.  Quantitative cytoarchitectonics of the posterior cingulate cortex in primates , 1986, The Journal of comparative neurology.

[9]  V. Braitenberg,et al.  Correlation of crystal growth with the staining of axons by the Golgi procedure. , 1967, Stain technology.

[10]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[11]  Jaap van Pelt,et al.  Descriptive and comparative analysis of geometrical properties of neuronal tree structures , 1986, Journal of Neuroscience Methods.

[12]  Karl Zilles,et al.  A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue , 1986, Journal of Neuroscience Methods.

[13]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[14]  G. J. Smit,et al.  The morphometry of the branching pattern in dendrites of the visual cortex pyramidal cells , 1975, Brain Research.

[15]  A. Ruiz-Marcos,et al.  Dynamic architecture of the visual cortex. , 1970, Brain research.

[16]  A new Golgi method for adult human brains , 1986, Journal of Neuroscience Methods.

[17]  Uylings Hb,et al.  Ordering methods in quantitative analysis of branching structures of dendritic trees. , 1975 .

[18]  M. Marín‐padilla Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[19]  M. Berry,et al.  Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  R. S. Williams,et al.  THE GOLGI RAPID METHOD IN CLINICAL NEUROPATHOLOGY: THE MORPHOLOGIC CONSEQUENCES OF SUBOPTIMAL FIXATION , 1978, Journal of neuropathology and experimental neurology.

[21]  H. Uylings,et al.  Morphometric methods in sexual dimorphism research on the central nervous system. , 1984, Progress in brain research.

[22]  F. Mauguière,et al.  Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey , 2004, Experimental Brain Research.

[23]  I. Akiguchi,et al.  Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: A quantitative Golgi study , 2004, Acta Neuropathologica.

[24]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[25]  A. Scheibel,et al.  Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. , 1967, Experimental neurology.

[26]  S. J. Buell Golgi‐Cox and Rapid Golgi Methods as Applied to Autopsied Human Brain Tissue: Widely Disparate Results , 1982, Journal of neuropathology and experimental neurology.

[27]  D. K. Morest,et al.  The Golgi Methods , 1981 .

[28]  H. Haug,et al.  The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. , 1984, Journal fur Hirnforschung.

[29]  J. Schadé,et al.  Changes during growth in the volume and surface area of cortical neurons in the rabbit. , 1960, Experimental neurology.

[30]  Alan Peters,et al.  A technique for estimating total spine numbers on golgi‐impregnated dendrites , 1979, The Journal of comparative neurology.

[31]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells , 1985, The Journal of comparative neurology.

[32]  D L Rosene,et al.  Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. , 1979, Science.

[33]  M. Yamada,et al.  Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. , 1975, Advances in neurology.

[34]  H. B. M. Uylings,et al.  The metric analysis of three-dimensional dendritic tree patterns: a methodological review , 1986, Journal of Neuroscience Methods.

[35]  M Marin-Padilla,et al.  Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man , 1967, The Journal of comparative neurology.

[36]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[37]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[38]  M. Marín‐padilla Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[39]  F Mauguiere,et al.  The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. , 1980, Brain : a journal of neurology.

[40]  B. V. Updyke,et al.  A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups , 1983, The Journal of comparative neurology.

[41]  H BRODY,et al.  Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex , 1955, The Journal of comparative neurology.

[42]  G. J. Smit,et al.  Ordering methods in quantitative analysis of branching structures of dendritic trees. , 1975, Advances in neurology.

[43]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[44]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[45]  H. Haug,et al.  DER GRAUZELLKOEFFIZIENT DER MENSCHLICHEN HIRNRINDE. BERECHNUNGEN NACH DEM ZAHLENMATERIAL v. ECONOMO’S , 1956 .

[46]  A. Scheibel,et al.  Pattern and field in cortical structure: The rabbit , 1967, The Journal of comparative neurology.

[47]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[48]  S. Landas,et al.  Staining of human and rat brain Vibratome sections by a new Golgi method , 1982, Journal of Neuroscience Methods.

[49]  L. Kok,et al.  Microwaves for microscopy , 1990, Journal of microscopy.

[50]  H. Seldon Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception , 1981, Brain Research.

[51]  D E Olson,et al.  Models of the human bronchial tree. , 1971, Journal of applied physiology.

[52]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[53]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. III. Numerical considerations , 1985, The Journal of comparative neurology.

[54]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[55]  Sholl Da Organization of the Cerebral Cortex , 1967 .

[56]  Dendritic field analysis--a reappraisal. , 1972, T.-I.-T. journal of life sciences.

[57]  B. Vogt,et al.  Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and golgi study , 1976, The Journal of comparative neurology.

[58]  M. Berry,et al.  The effects of undernutrition on Purkinje cell dendritic growth in the rat , 1978, The Journal of comparative neurology.

[59]  J P SCHADE,et al.  Structural organization of the human cerebral cortex. 1. Maturation of the middle frontal gyrus. , 1961, Acta anatomica.