Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches

Micro- or nanoelectromechanical system (MEMS/NEMS) is a multidisciplinary field, which has witnessed explosive growth during the past decades. The current materials for MEMS are dominated by Si thanks to the fully based technology for CMOS. However, Si has its own intrinsic limitations such as poor mechanical or tribological properties and poor thermal stability. Carbon-based materials such as diamond, carbon nanotube, and graphene possess excellent properties such as low mass, high Young's modulus, high thermal conductivity, hydrophobic surface, and tailorable electronic configuration, which make these materials promising for MEMS/NEMS applications with diverse and much better performance than Si. In this review, we describe the recent progress of carbon-based materials for MEMS/NEMS with focus on diamond, carbon nanotube, and graphene. The growth of these carbon materials is briefly described and only selected properties are discussed with respect to MEMS/NEMS applications. The fabrication process for suspended structures of these materials toward MEMS/NEMS is comprehensively reviewed from the recent literatures. Special attention is devoted to the state-of-the-art of MEM/NEM switches based on these carbon materials, one of the most important fields in MEMS/NEMS. Finally, the application of carbon-based MEM/NEM switches to microwave field is critically analyzed.

[1]  Hui-Ming Cheng,et al.  Purification of carbon nanotubes , 2008 .

[2]  Robert C. Davis,et al.  Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. , 2008, Nature nanotechnology.

[3]  Inspec,et al.  Properties and growth of diamond , 1994 .

[4]  A. Aleksov,et al.  Diamond field effect transistors—concepts and challenges , 2003 .

[5]  S. Iizuka,et al.  Nanocrystalline diamond formation by using an inductively coupled radio-frequency CH4/H2/Ar plasma , 2005 .

[6]  John A. Carlisle,et al.  Low temperature growth of ultrananocrystalline diamond , 2004 .

[7]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[8]  S. Yamasaki,et al.  n-type doping of (001)-oriented single-crystalline diamond by phosphorus , 2005 .

[9]  J. Robinson,et al.  Wafer-scale reduced graphene oxide films for nanomechanical devices. , 2008, Nano letters.

[10]  D. Gruen,et al.  Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond , 2002 .

[11]  Jie Liu,et al.  How Catalysts Affect the Growth of Single‐Walled Carbon Nanotubes on Substrates , 2010, Advanced materials.

[12]  J. Butler,et al.  Fabrication of suspended single crystal diamond devices by electrochemical etch , 2007 .

[13]  E. Campbell,et al.  A Three-Terminal Carbon Nanorelay , 2004 .

[14]  S. Yamasaki,et al.  Ohmic contacts on p-type homoepitaxial diamond and their thermal stability , 2005 .

[15]  S. Shikata,et al.  Fabrication of 1 Inch Mosaic Crystal Diamond Wafers , 2010 .

[16]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[17]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[18]  Rajeshuni Ramesham,et al.  Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process , 1999 .

[19]  Zhongfan Liu,et al.  Fabrication of electromechanical switch using interconnected single-walled carbon nanotubes , 2008 .

[20]  G. Galli,et al.  Erratum: Thermal Conductivity of Isolated and Interacting Carbon Nanotubes: Comparing Results from Molecular Dynamics and the Boltzmann Transport Equation [Phys. Rev. Lett.99, 255502 (2007)] , 2009 .

[21]  A. Obraztsov,et al.  Chemical vapour deposition: Making graphene on a large scale. , 2009, Nature nanotechnology.

[22]  Rashid Bashir,et al.  Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. , 2010, Lab on a chip.

[23]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[24]  Niraj Sinha,et al.  Carbon nanotube-based sensors. , 2006, Journal of nanoscience and nanotechnology.

[25]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[26]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[27]  R. Krupke,et al.  Probing dielectrophoretic force fields with metallic carbon nanotubes , 2006 .

[28]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[29]  C. Huffman,et al.  Gas-Phase Purification of Single-Wall Carbon Nanotubes , 2000 .

[30]  T. Teraji,et al.  Chemical vapor deposition of homoepitaxial diamond films , 2006 .

[31]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[32]  S. Shikata,et al.  Recent Progress of Diamond Device toward Power Application , 2009 .

[33]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[34]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[35]  A. Datta,et al.  Are Diamonds a MEMS' Best Friend? , 2007, IEEE Microwave Magazine.

[36]  J. Posthill,et al.  Single‐crystal diamond plate liftoff achieved by ion implantation and subsequent annealing , 1992 .

[37]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[38]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[39]  Anne Claire Dupuis,et al.  The catalyst in the CCVD of carbon nanotubes—a review , 2005 .

[40]  J.C.M. Hwang,et al.  Charging characteristics of ultra-nano-crystalline diamond in RF MEMS capacitive switches , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[41]  Xin Jiang,et al.  CVD diamond films: nucleation and growth , 1999 .

[42]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[43]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[44]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[45]  R. Kalish,et al.  Damage threshold for ion‐beam induced graphitization of diamond , 1995 .

[46]  A. Reina,et al.  All graphene electromechanical switch fabricated by chemical vapor deposition , 2009 .

[47]  C. Hierold,et al.  Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors. , 2010, Nano letters.

[48]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[49]  K. V. Ravi,et al.  Resistivity of chemical vapor deposited diamond films , 1989 .

[50]  A. Obraztsov,et al.  Chemical vapor deposition of thin graphite films of nanometer thickness , 2007 .

[51]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[52]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[53]  B. Courtoi,et al.  Beyond CMOS , 2002, Proceedings 20th IEEE VLSI Test Symposium (VTS 2002).

[54]  T. Yoshitake,et al.  Ultrananocrystalline diamond prepared by pulsed laser deposition , 2006 .

[55]  G. Galli,et al.  Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation. , 2007, Physical review letters.

[56]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[57]  J. Meindl,et al.  Breakdown current density of graphene nanoribbons , 2009, 0906.4156.

[58]  A. Polycarpou,et al.  Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10 nm nanoindentation measurements , 2004 .

[59]  Victor M. Bright,et al.  Process integration of carbon nanotubes into microelectromechanical systems , 2006 .

[60]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[61]  H. V. D. Zant,et al.  Nanomechanical properties of few-layer graphene membranes , 2008, 0802.0413.

[62]  W. Fang,et al.  Patterning and growth of carbon nanotubes on a highly structured 3D substrate surface , 2009 .

[63]  S. Campbell,et al.  Aligned dense single-walled carbon nanotube beams and cantilevers for nanoelectromechanical systems applications , 2010 .

[64]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[65]  R. Andrews,et al.  Multiwall carbon nanotubes: synthesis and application. , 2002, Accounts of Chemical Research.

[66]  E. Campbell,et al.  Production of individual suspended single-walled carbon nanotubes using the ac electrophoresis technique , 2004 .

[67]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[68]  S. Matsumoto,et al.  Diamond synthesis from gas phase in microwave plasma , 1983 .

[69]  Jong-Hyun Ahn,et al.  Wafer-scale synthesis and transfer of graphene films. , 2009, Nano letters.

[70]  R. Takalkar,et al.  Edge-shaped diamond field emission arrays , 2004, Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737).

[71]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[72]  W. Park,et al.  Direct photolithographic route to selective growth of single-walled carbon nanotubes using a modified photoresist with ferrocene , 2006 .

[73]  J. Robertson Diamond-like amorphous carbon , 2002 .

[74]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[75]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[76]  Fabrication of multiwalled carbon nanotube bridges by poly-methylmethacrylate suspended dispersion , 2003 .

[77]  H. Knapp,et al.  Batch fabrication of nanotubes suspended between microelectrodes , 2007 .

[78]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[79]  Wei Zhang,et al.  Length-dependent thermal conductivity of an individual single-wall carbon nanotube , 2007 .

[80]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[81]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[82]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[83]  K. A. Jose,et al.  RF MEMS and Their Applications , 2002 .

[84]  Gehan A. J. Amaratunga,et al.  Nanoelectromechanical switch with low voltage drive , 2008 .

[85]  S. Koizumi n-Type Doping of Diamond , 2006 .

[86]  E. Obermeier,et al.  Etching of polycrystalline diamond and amorphous carbon films by RIE , 1992 .

[87]  Alan M. Cassell,et al.  Directed Growth of Free-StandingSingle-Walled Carbon Nanotubes , 1999 .

[88]  Meyya Meyyappan,et al.  A review of plasma enhanced chemical vapour deposition of carbon nanotubes , 2009 .

[89]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[90]  E. Yang,et al.  A multi-walled carbon nanotube-aluminum bimorph nanoactuator. , 2009, Nanotechnology.

[91]  C. Zorman,et al.  Micro‐ and nanomechanical structures for silicon carbide MEMS and NEMS , 2008 .

[92]  Bambi Hu,et al.  Effect of substrate on thermal conductivity of single-walled carbon nanotubes , 2009 .

[93]  Q. Zheng,et al.  Tunable resonant frequencies for determining Young's moduli of nanowires , 2009 .

[94]  M. Roukes,et al.  A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. , 2008, Nature nanotechnology.

[95]  Baowen Li,et al.  Young's modulus of Graphene: a molecular dynamics study , 2009, 0906.5237.

[96]  J. N. Wang,et al.  Purification of Single-Walled Carbon Nanotubes by a Highly Efficient and Nondestructive Approach , 2008 .

[97]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[98]  T. Potter,et al.  Piezoresistivity in vapor-deposited diamond films , 1992 .

[99]  Meiyong Liao,et al.  Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond , 2007 .

[100]  Larry Epp,et al.  Electromechanical carbon nanotube switches for high-frequency applications. , 2006, Nano letters.

[101]  J. Lukes,et al.  Thermal Conductivity of Single-Wall Carbon Nanotubes , 2004 .

[102]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[103]  S. Shikata,et al.  Self-aligned fabrication of single crystal diamond gated field emitter array , 2005 .

[104]  Qian Wang,et al.  Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Liao,et al.  Suspended Single‐Crystal Diamond Nanowires for High‐Performance Nanoelectromechanical Switches , 2010, Advanced materials.

[106]  A. Yamamoto,et al.  Evaluation of diamond gauge factor up to 500 °C , 2007 .

[107]  E. Campbell,et al.  Carbon-nanotube-based Nano Electromechanical Switches , 2009 .

[108]  Xiaogan Liang,et al.  Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. , 2009, Nano letters.

[109]  Jan G. Korvink,et al.  MEMS: A Practical Guide to Design, Analysis, and Applications , 2005 .

[110]  G. C. Chen,et al.  Growth feature of layered self-standing diamond films by DC arc plasma jet CVD , 2007 .

[111]  E. Kohn,et al.  Diamond MEMS — a new emerging technology , 1999 .

[112]  P. Kim,et al.  NEMS applications of graphene , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[113]  Robert A. Barton,et al.  Free-standing epitaxial graphene. , 2009, Nano letters.

[114]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[115]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[116]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[117]  Prithu Sharma,et al.  Recent advances in carbon nanotube-based electronics , 2008 .

[118]  David H. Cobden,et al.  Quantum dots in suspended single-wall carbon nanotubes , 2001 .

[119]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[120]  S. Shikata,et al.  Cycle of two-step etching process using ICP for diamond MEMS applications , 2007 .

[121]  Arnaud Magrez,et al.  Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling , 2007 .

[122]  Liping Huang,et al.  Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. , 2009, Journal of the American Chemical Society.

[123]  Peter Sutter,et al.  Epitaxial graphene: How silicon leaves the scene. , 2009, Nature materials.

[124]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.

[125]  D. Peroulis,et al.  DC-65 GHz characterization of nanocrystalline diamond leaky film for reliable RF MEMS switches , 2005, 2005 European Microwave Conference.

[126]  X. Huang,et al.  Determination of the young's modulus of structurally defined carbon nanotubes. , 2008, Nano letters.

[127]  Kenji Watanabe,et al.  Ultraviolet Emission from a Diamond pn Junction , 2001, Science.

[128]  J. Krim,et al.  Contact voltage-induced softening of RF microelectromechanical system gold-on-gold contacts at cryogenic temperatures , 2010 .

[129]  K. Nakajima,et al.  Improved ferroelectric properties of Pb(Zr0.52,Ti0.48)O3 thin film on single crystal diamond using CaF2 layer , 2010 .

[130]  E. Kohn,et al.  Diamond switch using new thermal actuation principle , 2003 .

[131]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[132]  Kim,et al.  Nanotube nanotweezers , 1999, Science.

[133]  Yong Qing Fu,et al.  Diamond and diamond-like carbon MEMS , 2007 .

[134]  M. Taghioskoui Trends in graphene research , 2009 .

[135]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[136]  Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties , 2009, 0901.1136.

[137]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[138]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[139]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[140]  K. Petersen Micromechanical membrane switches on silicon , 1979 .

[141]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[142]  C. Tsai,et al.  Youngs Modulus of Nanowires Measured by Electrostatic Attraction: Application to Multi-Walled Carbon Nanotubes , 2010 .

[143]  Klaus Kern,et al.  Elastic properties of chemically derived single graphene sheets. , 2008, Nano letters.

[144]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[145]  John A. Rogers,et al.  Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films , 2004 .

[146]  Arnaud Magrez,et al.  Controlled positioning of carbon nanotubes by dielectrophoresis: insights into the solvent and substrate role. , 2010, ACS nano.

[147]  Erik Dujardin,et al.  Self-assembled switches based on electroactuated multiwalled nanotubes , 2005 .

[148]  T. Tsutsumoto,et al.  Pressure sensor using p-type polycrystalline diamond piezoresistors , 2005 .

[149]  B. Babic,et al.  Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes , 2003, cond-mat/0307252.

[150]  Hiroyuki Fujita,et al.  Fabrication of single-crystal Si cantilever array , 2002 .

[151]  Alan M. Cassell,et al.  Directed Growth of Free‐Standing Single‐Walled Carbon Nanotubes. , 1999 .

[152]  Anupama B. Kaul,et al.  Carbon nanotube switches for communication and memory applications , 2008, SPIE Defense + Commercial Sensing.

[153]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[154]  H. Dai,et al.  Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. , 2003, Physical review letters.

[155]  P. Bergonzo,et al.  Selective nucleation in silicon moulds for diamond MEMS fabrication , 2009 .

[156]  Heiko B. Weber,et al.  Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis , 2003 .

[157]  N. Tai,et al.  Nondestructive purification of single-walled carbon nanotube rope through a battery-induced ignition and chemical solution approach , 2010 .

[158]  Ron Dagani,et al.  CARBON-BASED ELECTRONICS , 1999 .

[159]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[160]  J. Kinaret,et al.  A carbon-nanotube-based nanorelay , 2002, cond-mat/0208427.

[161]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[162]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[163]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[164]  Y. Okumura,et al.  Electrical characteristic of diamond film synthesized by combustion flame , 2010 .

[165]  C. Berger,et al.  Epitaxial graphene , 2007, 0704.0285.

[166]  Horacio Dante Espinosa,et al.  Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films , 2004 .

[167]  K. Nakajima,et al.  Piezoelectric Pb(Zr0.52Ti0.48)O3 thin films on single crystal diamond: Structural, electrical, dielectric, and field-effect-transistor properties , 2010 .

[168]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[169]  D. Gruen,et al.  Synthesis, properties, and applications of ultrananocrystalline diamond , 2005 .

[170]  A. Hashimoto,et al.  A breakthrough toward wafer-size epitaxial graphene transfer , 2010, 1005.4725.

[171]  Toshiaki Natsuki,et al.  Prediction of elastic properties for single-walled carbon nanotubes , 2004 .

[172]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[173]  Rodolfo Cruz-Silva,et al.  Flash reduction and patterning of graphite oxide and its polymer composite. , 2009, Journal of the American Chemical Society.

[174]  Robert Plana,et al.  Microwave switches based on graphene , 2009 .

[175]  Zhen Yu,et al.  Carbon nanotube transistor operation at 2.6 Ghz , 2004 .

[176]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[177]  Yoichiro Sato,et al.  Vapor Deposition of Diamond Particles from Methane , 1982 .

[178]  E. Kohn,et al.  Diamond microwave micro relay , 2002 .

[179]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[180]  H. Mao,et al.  Very high growth rate chemical vapor deposition of single-crystal diamond , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Yu Sun,et al.  An in-plane, bi-directional electrothermal MEMS actuator , 2006 .

[182]  Hui‐Ming Cheng,et al.  Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. , 2009, ACS nano.

[183]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[184]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[185]  Xuekun Sun,et al.  Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach , 2005 .

[186]  Paul L. McEuen,et al.  Mechanical properties of suspended graphene sheets , 2007 .

[187]  A. Ionescu,et al.  Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices , 2010 .

[188]  Martin Stutzmann,et al.  Temperature-dependent transport properties of hydrogen-induced diamond surface conductive channels , 2005 .

[189]  Matthias Imboden,et al.  High quality factor gigahertz frequencies in nanomechanical diamond resonators , 2007, 0710.2613.

[190]  Takeyasu Saito,et al.  New etching process for device fabrication using diamond , 2004 .

[191]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[192]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[193]  Andrew G. Glen,et al.  APPL , 2001 .

[194]  C. D. Rios,et al.  RF MEMS from a device perspective , 2000 .

[195]  H. Okushi,et al.  Device-grade homoepitaxial diamond film growth , 2002 .

[196]  P. Kirby,et al.  Piezo-actuated nanodiamond cantilever technology for high-speed applications , 2008 .

[197]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[198]  A. Tibrewala,et al.  Diamond-like carbon for MEMS , 2007 .

[199]  S. Srinivasan,et al.  Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems , 2007 .

[200]  K. W. Kim,et al.  First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene , 2009 .

[201]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[202]  Luigi Colombo,et al.  Contact resistance in few and multilayer graphene devices , 2010 .

[203]  D Garcia-Sanchez,et al.  Imaging mechanical vibrations in suspended graphene sheets. , 2008, Nano letters.

[204]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[205]  P. Ramasamy,et al.  Electrochemical Etching of 6H-SiC Using Aqueous KOH Solutions with Low Surface Roughness , 2003 .

[206]  Jae Hyuck Jang,et al.  High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. , 2008, Nature materials.

[207]  John P. Sullivan,et al.  Performance of amorphous diamond RF MEMS capacitive switch , 2004 .

[208]  F. Papadimitrakopoulos,et al.  Purification and Separation of Carbon Nanotubes , 2004 .

[209]  Horst Hahn,et al.  Ultra-large-scale directed assembly of single-walled carbon nanotube devices. , 2007, Nano letters.

[210]  M. Henini Properties and growth of diamond , 1998 .

[211]  Weiyuan Wang,et al.  Diamond surface micromachining technology , 1999 .

[212]  Tianhong Cui,et al.  Well-aligned and suspended single-walled carbon nanotube film: Directed self-assembly, patterning, and characterization , 2009 .

[213]  D. Aslam,et al.  High-Performance Polycrystalline Diamond Micro- and Nanoresonators , 2008, Journal of Microelectromechanical Systems.

[214]  E. Delevoye,et al.  Development and characterization of membranes actuated by a PZT thin film for MEMS applications , 2004 .

[215]  M. Liao,et al.  Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems , 2010 .

[216]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[217]  C. L. Keast,et al.  Channel engineering of SOI MOSFETs for RF applications , 2009, 2009 IEEE International SOI Conference.

[218]  Wenzhi Li,et al.  Clean double-walled carbon nanotubes synthesized by CVD , 2003 .

[219]  N. Aluru,et al.  Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. , 2009, Nano letters.

[220]  Robert C. Davis,et al.  Mechanical properties of beams from self-assembled closely packed and aligned single-walled carbon nanotubes. , 2009, Physical Review Letters.

[221]  Kenji Ueda,et al.  Diamond-based RF power transistors: Fundamentals and applications , 2007 .

[222]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[223]  Jae Eun Jang,et al.  Nanoscale memory cell based on a nanoelectromechanical switched capacitor. , 2008, Nature nanotechnology.

[224]  E. Kohn,et al.  Concepts for diamond electronics , 2007 .

[225]  G. Amaratunga,et al.  Nanoelectromechanical switches with vertically aligned carbon nanotubes , 2005 .

[226]  O. Eriksson,et al.  Conductivity engineering of graphene by defect formation , 2009, 0905.1346.

[227]  K. Kobashi,et al.  Smooth and high-rate reactive ion etching of diamond , 2002 .

[228]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[229]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[230]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[231]  Jiwoong Park,et al.  Transfer-free batch fabrication of single layer graphene transistors. , 2009, Nano letters.

[232]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[233]  Zhenting Dai,et al.  Mechanical and electrostatic properties of carbon nanotubes and nanowires , 2001 .

[234]  D. Moses,et al.  Low energy ion implantation and electrochemical separation of diamond films , 1993 .

[235]  C. Hwang,et al.  Molecular dynamics study of multi-walled carbon nanotubes under uniaxial loading , 2010 .

[236]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[237]  J. M. Smith,et al.  Fabrication of Ultrathin Single‐Crystal Diamond Membranes , 2008 .

[238]  H. Kanda,et al.  Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition , 2004 .