Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors

[1]  O. Fernandez-Capetillo,et al.  Lac operator repeats generate a traceable fragile site in mammalian cells , 2011, EMBO reports.

[2]  Oscar Fernandez-Capetillo,et al.  Targeting ATR and Chk1 kinases for cancer treatment: A new model for new (and old) drugs , 2011, Molecular oncology.

[3]  T. Halazonetis,et al.  Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress , 2011, Molecular oncology.

[4]  T. Golub,et al.  Selective killing of cancer cells with a small molecule targeting stress response to ROS , 2011, Nature.

[5]  James R Bischoff,et al.  A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations , 2011, Nature Structural &Molecular Biology.

[6]  Cynthia Winter,et al.  RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma , 2011, Proceedings of the National Academy of Sciences.

[7]  O. Fernandez-Capetillo,et al.  The ATR barrier to replication-born DNA damage. , 2010, DNA repair.

[8]  B. Nabet,et al.  Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. , 2010, Cancer research.

[9]  Youngho Seo,et al.  Selective activation of p53-mediated tumour suppression in high-grade tumours , 2010, Nature.

[10]  Alan Ashworth,et al.  Translating cancer research into targeted therapeutics , 2010, Nature.

[11]  M. Meuth,et al.  Enhanced H2AX Phosphorylation, DNA Replication Fork Arrest, and Cell Death in the Absence of Chk1 , 2010, Molecular biology of the cell.

[12]  A. Ashworth,et al.  Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. , 2009, The New England journal of medicine.

[13]  F. Mulero,et al.  A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging , 2009, Nature Genetics.

[14]  C. Grandori,et al.  c-Myc Accelerates S-Phase and Requires WRN to Avoid Replication Stress , 2009, PloS one.

[15]  David Allard,et al.  Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer , 2009, Science.

[16]  M. Eilers,et al.  Facilitating replication under stress: an oncogenic function of MYC? , 2009, Nature Reviews Cancer.

[17]  A. Efeyan,et al.  Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression , 2009, PloS one.

[18]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[19]  M. Pickering,et al.  miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression , 2009, Oncogene.

[20]  G. Evan,et al.  Distinct thresholds govern Myc's biological output in vivo. , 2008, Cancer cell.

[21]  R. Bernards,et al.  Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1 , 2008, The EMBO journal.

[22]  K. Cimprich,et al.  ATR: an essential regulator of genome integrity , 2008, Nature Reviews Molecular Cell Biology.

[23]  K. Zeller,et al.  Global Regulation of Nucleotide Biosynthetic Genes by c-Myc , 2008, PloS one.

[24]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[25]  H. Stein,et al.  The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. , 2007, Blood.

[26]  R. Kanaar,et al.  The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks , 2007, Nature Structural &Molecular Biology.

[27]  John Lough,et al.  Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response , 2007, Nature.

[28]  W. Gu,et al.  Non-transcriptional control of DNA replication by c-Myc , 2007, Nature.

[29]  John D Gordan,et al.  HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. , 2007, Cancer cell.

[30]  M. Barbacid,et al.  Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. , 2007, Cancer cell.

[31]  Albert J. Fornace,et al.  Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase , 2006, The Journal of experimental medicine.

[32]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[33]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[34]  J. Bartek,et al.  Inhibition of Human Chk1 Causes Increased Initiation of DNA Replication, Phosphorylation of ATR Targets, and DNA Breakage , 2005, Molecular and Cellular Biology.

[35]  Alan Ashworth,et al.  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy , 2005, Nature.

[36]  T. Ørntoft,et al.  DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis , 2005, Nature.

[37]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[38]  Thomas Helleday,et al.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase , 2005, Nature.

[39]  Manuel Serrano,et al.  Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. , 2003, Cancer cell.

[40]  Soyoung Lee,et al.  A Senescence Program Controlled by p53 and p16INK4a Contributes to the Outcome of Cancer Therapy , 2002, Cell.

[41]  G. Wahl,et al.  c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. , 2002, Molecular cell.

[42]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[43]  S. Reed,et al.  Deregulated cyclin E induces chromosome instability , 1999, Nature.

[44]  L. Hartwell,et al.  Integrating genetic approaches into the discovery of anticancer drugs. , 1997, Science.

[45]  Jürg Zimmermann,et al.  Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells , 1996, Nature Medicine.

[46]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[47]  A. W. Harris,et al.  The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells , 1988, The Journal of experimental medicine.

[48]  M. Barbacid,et al.  Cdk2 suppresses cellular senescence induced by the c-myc oncogene , 2010, Nature Cell Biology.

[49]  R. Palmiter,et al.  Pancreatic tumor pathogenesis reflects the causative genetic lesion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.