Application of Transaminases in a Disperse System for the Bioamination of Hydrophobic Substrates

Abstract The challenging bioamination of hydrophobic substrates has been attained through the employment of a disperse system consisting of a combination of a low polarity solvent (e. g. isooctan ...

[1]  A. Bommarius,et al.  Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines , 2018, Catalysts.

[2]  Per Berglund,et al.  Characterization of the stability of Vibrio fluvialis JS17 amine transaminase. , 2018, Journal of biotechnology.

[3]  M. Contente,et al.  Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions , 2018, Nature Catalysis.

[4]  Elaine O’Reilly,et al.  Transaminases for chiral amine synthesis. , 2018, Current opinion in chemical biology.

[5]  Stephen A. Kelly,et al.  Application of ω-Transaminases in the Pharmaceutical Industry. , 2018, Chemical reviews.

[6]  N. Turner,et al.  Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts , 2017 .

[7]  E. Ehimen,et al.  Asymmetric synthesis of chiral amine in organic solvent and in-situ product recovery for process intensification: A case study , 2017 .

[8]  Daniela Monti,et al.  Amine transaminases in chiral amines synthesis: recent advances and challenges , 2017, World journal of microbiology & biotechnology.

[9]  Henrik Land,et al.  Stabilization of an amine transaminase for biocatalysis , 2016 .

[10]  U. Bornscheuer,et al.  Cellulose as an efficient matrix for lipase and transaminase immobilization , 2016 .

[11]  A. Vogel,et al.  Immobilisation of ω-transaminase for industrial application: Screening and characterisation of commercial ready to use enzyme carriers , 2015 .

[12]  Véronique Nardello-Rataj,et al.  Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. , 2015, Angewandte Chemie.

[13]  Christine S. Fuchs,et al.  Synthesis of (R)- or (S)-valinol using ω-transaminases in aqueous and organic media. , 2014, Bioorganic & medicinal chemistry.

[14]  T. Ohshima,et al.  Analysis of L- and D-Amino Acids Using UPLC , 2014 .

[15]  S. Leavitt,et al.  Discovery of GS-9669, a thumb site II non-nucleoside inhibitor of NS5B for the treatment of genotype 1 chronic hepatitis C infection. , 2014, Journal of medicinal chemistry.

[16]  L. Kanerva,et al.  Reusable ω-transaminase sol–gel catalyst for the preparation of amine enantiomers , 2013 .

[17]  W. Fabian,et al.  Asymmetric Synthesis of 3‐Substituted Cyclohexylamine Derivatives from Prochiral Diketones via Three Biocatalytic Steps , 2013 .

[18]  F. G. Mutti,et al.  Asymmetric Bio‐amination of Ketones in Organic Solvents , 2012 .

[19]  Gregory Hughes,et al.  Development of an Immobilized Transaminase Capable of Operating in Organic Solvent , 2012 .

[20]  Henrik Land,et al.  Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4'-substituted acetophenones, and follows Swain-Lupton parameterisation. , 2012, Organic & biomolecular chemistry.

[21]  Per Berglund,et al.  Active Site Quantification of an ω-Transaminase by Performing a Half Transamination Reaction , 2011 .

[22]  Pär Tufvesson,et al.  Process considerations for the asymmetric synthesis of chiral amines using transaminases , 2011, Biotechnology and bioengineering.

[23]  Paul N. Devine,et al.  Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture , 2010, Science.

[24]  F. Gallou,et al.  A rapid and practical entry into cis-1,4-aminocyclohexanols , 2010 .

[25]  J. Ward,et al.  Synthesis of pyridoxamine 5′-phosphate using an MBA:pyruvate transaminase as biocatalyst , 2009, Journal of Molecular Catalysis B: Enzymatic.

[26]  Mark E. B. Smith,et al.  Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis , 2007 .

[27]  P. Halling,et al.  Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. , 1994, Enzyme and microbial technology.

[28]  P. Luisi Enzymes Hosted in Reverse Micelles in Hydrocarbon Solution , 1985 .

[29]  G. Eichele,et al.  Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. , 1984, Journal of molecular biology.

[30]  J. Ipaktschi Reduktion von Oximen mit Natriumboranat in Gegenwart von Übergangsmetallverbindungen , 1984 .