A Fast Normalized Maximum Likelihood Algorithm for Multinomial Data
暂无分享,去创建一个
[1] Henry Tirri,et al. On predictive distributions and Bayesian networks , 2000, Stat. Comput..
[2] Petri Kontkanen. COMPUTING THE REGRET TABLE FOR MULTINOMIAL DATA , 2005 .
[3] Jorma Rissanen,et al. Hypothesis Selection and Testing by the MDL Principle , 1999, Comput. J..
[4] Peter Gr Unwald. The minimum description length principle and reasoning under uncertainty , 1998 .
[5] Mikko Koivisto,et al. Sum-Product Algorithms for the Analysis of Genetic Risks , 2004 .
[6] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[7] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[8] Jorma Rissanen,et al. An MDL Framework for Data Clustering , 2005 .
[9] Jorma Rissanen,et al. Efficient Computation of Stochastic Complexity , 2003 .
[10] Neri Merhav,et al. Universal Prediction , 1998, IEEE Trans. Inf. Theory.
[11] Y. Shtarkov. AIM FUNCTIONS AND SEQUENTIAL ESTIMATION OF THE SOURCE MODEL FOR UNIVERSAL CODING , 1999 .
[12] Henry Tirri,et al. On Bayesian Case Matching , 1998, EWCBR.
[13] Henry Tirri,et al. Minimum Encoding Approaches for Predictive Modeling , 1998, UAI.
[14] Andrew R. Barron,et al. Asymptotic minimax regret for data compression, gambling, and prediction , 1997, IEEE Trans. Inf. Theory.
[15] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[16] Henry Tirri,et al. Supervised model-based visualization of high-dimensional data , 2000, Intell. Data Anal..
[17] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[18] Jorma Rissanen,et al. Strong optimality of the normalized ML models as universal codes and information in data , 2001, IEEE Trans. Inf. Theory.