Epistatic relationship between Waardenburg Syndrome genes MITF and PAX3

[1]  W. Pavan,et al.  Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. , 1997, Development.

[2]  S. Aaronson,et al.  Alkaptonuria: such a long journey , 1996, Nature Genetics.

[3]  Y. Nobukuni,et al.  Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. , 1996, American journal of human genetics.

[4]  J. Epstein,et al.  Pax3 modulates expression of the c-Met receptor during limb muscle development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Suzuki,et al.  Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. , 1996, Biochemical and biophysical research communications.

[6]  D S Latchman,et al.  Transcription-factor mutations and disease. , 1996, The New England journal of medicine.

[7]  D. Shapiro,et al.  The alveolar rhabdomyosarcoma PAX3/FKHR fusion protein is a transcriptional activator. , 1995, Oncogene.

[8]  F. Barr,et al.  The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3 , 1995, Molecular and cellular biology.

[9]  H. Riethman,et al.  Genomic organization of the human PAX3 gene: DNA sequence analysis of the region disrupted in alveolar rhabdomyosarcoma. , 1995, Genomics.

[10]  W. Reardon,et al.  The mutational spectrum in Waardenburg syndrome. , 1994, Human molecular genetics.

[11]  Andrew P. Read,et al.  Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene , 1994, Nature Genetics.

[12]  J. Wijnholds,et al.  Pax-3-DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains. , 1994, Nucleic acids research.

[13]  E. Boncinelli,et al.  The thyroid transcription factor‐1 gene is a candidate target for regulation by Hox proteins. , 1994, The EMBO journal.

[14]  M. Goulding,et al.  Molecular basis of splotch and Waardenburg Pax-3 mutations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Semenza Transcriptional regulation of gene expression: Mechanisms and pathophysiology , 1994, Human mutation.

[16]  H. Kondoh,et al.  Overlapping positive and negative regulatory elements determine lens-specific activity of the delta 1-crystallin enhancer , 1993, Molecular and cellular biology.

[17]  C. Baldwin,et al.  Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). , 1993, American journal of human genetics.

[18]  J. Fex,et al.  Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation , 1992, Molecular and Cellular Neuroscience.

[19]  C. Baldwin,et al.  An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome , 1992, Nature.

[20]  R. Balling,et al.  Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene , 1992, Nature.

[21]  T. Fleming,et al.  Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Ratner A New Era for Genentech, And So It Goes , 1990, Bio/Technology.

[23]  Howard Bh,et al.  A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. , 1990 .

[24]  W. Schaffner,et al.  Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. , 1989, Nucleic acids research.