Global Well-Posedness of Compressible Navier–Stokes Equations for Some Classes of Large Initial Data
暂无分享,去创建一个
Wei Wang | Chao Wang | Zhifei Zhang | Wei Wang | Zhifei Zhang | Chao Wang
[1] Ting Zhang. Global Wellposed Problem for the 3-D Incompressible Anisotropic Navier-Stokes Equations in an Anisotropic Space , 2007, 0712.2652.
[2] Takaaki Nishida,et al. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .
[3] Ting Zhang. Erratum to: Global Wellposed Problem for the 3-D Incompressible Anisotropic Navier-Stokes Equations in an Anisotropic Space , 2009 .
[4] Zhouping Xin,et al. Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .
[5] Song Jiang,et al. On Spherically Symmetric Solutions¶of the Compressible Isentropic Navier–Stokes Equations , 2001 .
[6] Ping Zhang,et al. Sums of large global solutions to the incompressible Navier-Stokes equations , 2010, 1002.4736.
[7] Chao Wang,et al. A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows , 2011 .
[8] David Hoff,et al. Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids , 1997 .
[9] Takaaki Nishida,et al. The Initial Value Problem for the Equations of Motion of compressible Viscous and Heat-conductive Fluids. , 1979 .
[10] J. Nash,et al. Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .
[11] N. Lerner,et al. Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .
[12] Qionglei Chen,et al. Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity , 2009, 0907.4540.
[13] David Hoff,et al. Compressible Flow in a Half-Space with Navier Boundary Conditions , 2005 .
[14] E. Feireisl,et al. On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .
[15] On the global wellposedness of the 3-D Navier–Stokes equations with large initial data , 2005, math/0508374.
[16] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[17] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[18] R. Danchin. Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .
[19] Raphaël Danchin,et al. A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical Lp Framework , 2010 .
[20] Zhifei Zhang,et al. Global regularity for the Navier–Stokes equations with some classes of large initial data , 2011 .
[21] Chao Wang,et al. A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations , 2010, 1001.1247.
[22] Gui-Qiang G. Chen,et al. Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow , 2009, 0910.2360.
[23] David Hoff,et al. Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions , 2002 .
[24] Ping Zhang,et al. Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids , 2003 .
[25] Zhouping Xin,et al. Global well‐posedness of classical solutions with large oscillations and vacuum to the three‐dimensional isentropic compressible Navier‐Stokes equations , 2010, 1004.4749.
[26] Ting Zhang. Global solutions of compressible Navier-Stokes equations with a density-dependent viscosity coefficient , 2009, 0904.1659.
[27] Marco Cannone,et al. A generalization of a theorem by Kato on Navier-Stokes equations , 1997 .
[28] David Hoff,et al. Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data , 1995 .
[29] Raphaël Danchin,et al. Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .
[30] Y. Meyer,et al. Solutions auto-similaires des équations de Navier-Stokes , 1994 .
[31] R. Danchin. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density , 2007 .
[32] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[33] B. Haspot. Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces , 2011 .
[34] Raphaël Danchin,et al. On the uniqueness in critical spaces for compressible Navier-Stokes equations , 2005 .
[35] Isabelle Gallagher,et al. Large, global solutions to the Navier-Stokes equations, slowly varying in one direction , 2007, 0710.5408.
[36] Zhifei Zhang,et al. ON THE ILL-POSEDNESS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS , 2011, 1109.6092.
[37] Isabelle Gallagher,et al. Global regularity for some classes of large solutions to the Navier-Stokes equations , 2008, 0807.1265.
[38] R. Danchin. LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .
[39] Ping Zhang,et al. On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations , 2007 .
[40] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[41] Zhifei Zhang,et al. Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities , 2008, 0811.4215.
[42] Boris Haspot,et al. Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.