Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data

ABSTRACT In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.

[1]  Saralees Nadarajah,et al.  An extension of the exponential distribution , 2011 .

[2]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[3]  Raghubar D. Sharma,et al.  Elements of Statistics. , 1925, Nature.

[4]  Elmer B. Mode,et al.  Elements of Statistics , 1942, Agronomy Journal.

[5]  S. Loukas,et al.  A lifetime distribution with decreasing failure rate , 1998 .

[6]  Faton Merovci,et al.  TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION , 2013 .

[7]  J. Moors,et al.  A quantile alternative for kurtosis , 1988 .

[8]  Chris P. Tsokos,et al.  Transmuted Weibull Distribution: A Generalization of theWeibull Probability Distribution , 2011 .

[9]  Debasis Kundu,et al.  A new class of weighted exponential distributions , 2009 .

[10]  Faton Merovci,et al.  The Transmuted Generalized Inverse Weibull Distribution , 2013, 1309.3268.

[11]  William T. Shaw,et al.  The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map , 2009, 0901.0434.

[12]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[13]  Robert King,et al.  A New Class of Transmuted Inverse Weibull Distribution for Reliability Analysis , 2014 .

[14]  Robert King,et al.  Characterisations of the transmuted inverse Weibull distribution , 2014 .

[15]  Sadegh Rezaei,et al.  A two-parameter lifetime distribution with decreasing failure rate , 2008, Comput. Stat. Data Anal..

[16]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[17]  Heleno Bolfarine,et al.  The Log-exponentiated-Weibull Regression Models with Cure Rate: Local Influence and Residual Analysis , 2021, Journal of Data Science.

[18]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[19]  J. Geoffrey Chase,et al.  Wavelet Signatures and Diagnostics for the Assessment of ICU Agitation-Sedation Protocols , 2011 .

[20]  J. Geoffrey Chase,et al.  Density Estimation and Wavelet Thresholding via Bayesian Methods: A Wavelet Probability Band and Related Metrics Approach to Assess Agitation and Sedation in ICU Patients , 2013 .

[21]  Qianqian Zhu,et al.  Transmuted Linear Exponential Distribution: A New Generalization of the Linear Exponential Distribution , 2014, Commun. Stat. Simul. Comput..

[22]  H. Ahn Tree-Structured Exponential Regression Modeling† , 1994 .

[23]  Saralees Nadarajah,et al.  A new lifetime distribution , 2014 .

[24]  Chris P. Tsokos,et al.  On the transmuted extreme value distribution with application , 2009 .

[25]  Robert King,et al.  Transmuted Modified Weibull Distribution: A Generalization of the Modified Weibull Probability Distribution , 2013 .

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  Forrest W. BREY,et al.  Statistical Methods for Survival Data Analysis , 2003 .