DELVE 6: An Ancient, Ultra-faint Star Cluster on the Outskirts of the Magellanic Clouds

We present the discovery of DELVE 6, an ultra-faint stellar system identified in the second data release of the DECam Local Volume Exploration (DELVE) survey. Based on a maximum-likelihood fit to its structure and stellar population, we find that DELVE 6 is an old (τ > 9.8 Gyr at 95% confidence) and metal-poor ([Fe/H] < −1.17 dex at 95% confidence) stellar system with an absolute magnitude of MV=−1.5−0.6+0.4 mag and an azimuthally averaged half-light radius of r1/2=10−3+4 pc. These properties are consistent with the population of ultra-faint star clusters uncovered by recent surveys. Interestingly, DELVE 6 is located at an angular separation of ∼10° from the center of the Small Magellanic Cloud (SMC), corresponding to a 3D physical separation of ∼20 kpc given the system’s observed distance (D ⊙ = 80 kpc). This also places the system ∼35 kpc from the center of the Large Magellanic Cloud (LMC), lying within recent constraints on the size of the LMC’s dark matter halo. We tentatively measure the proper motion of DELVE 6 using data from Gaia, which we find supports a potential association between the system and the LMC/SMC. Although future kinematic measurements will be necessary to determine its origins, we highlight that DELVE 6 may represent only the second or third ancient (τ > 9 Gyr) star cluster associated with the SMC, or one of fewer than two dozen ancient clusters associated with the LMC. Nonetheless, we cannot currently rule out the possibility that the system is a distant Milky Way halo star cluster.

[1]  Sergey E. Koposov,et al.  $S^5$: Probing the Milky Way and Magellanic Clouds potentials with the 6-D map of the Orphan-Chenab stream , 2022, 2211.04495.

[2]  R. Wechsler,et al.  Six More Ultra-faint Milky Way Companions Discovered in the DECam Local Volume Exploration Survey , 2022, The Astrophysical Journal.

[3]  A. Piatti,et al.  First evidence of a stripped star cluster from the small magellanic cloud , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[5]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy &amp; Astrophysics.

[6]  Ting S. Li,et al.  Proper Motions, Orbits, and Tidal Influences of Milky Way Dwarf Spheroidal Galaxies , 2022, The Astrophysical Journal.

[7]  E. Tollerud,et al.  Structural Parameters and Possible Association of the Ultra-faint Dwarfs Pegasus III and Pisces II from Deep Hubble Space Telescope Photometry , 2022, The Astrophysical Journal.

[8]  V. Ripepi,et al.  Deep Very Large Telescope Photometry of the Faint Stellar System in the Large Magellanic Cloud Periphery YMCA-1 , 2022, The Astrophysical Journal Letters.

[9]  D. Gerdes,et al.  The DECam Local Volume Exploration Survey Data Release 2 , 2022, The Astrophysical Journal Supplement Series.

[10]  V. Ripepi,et al.  Discovery of NES, an Extended Tidal Structure in the Northeast of the Large Magellanic Cloud , 2022, The Astrophysical Journal.

[11]  D. Nidever,et al.  Pegasus IV: Discovery and Spectroscopic Confirmation of an Ultra-faint Dwarf Galaxy in the Constellation Pegasus , 2022, The Astrophysical Journal.

[12]  Isaac Newton Group of Telescopes,et al.  The synchronised dance of the Magellanic Clouds' star formation history , 2022, 2203.09523.

[13]  L. Girardi,et al.  The VMC Survey -- XLVIII. Classical Cepheids unveil the 3D geometry of the LMC , 2022, 2203.01780.

[14]  Joana M. Oliveira,et al.  The VMC survey – XLIII. The spatially resolved star formation history across the Large Magellanic Cloud , 2021, Monthly Notices of the Royal Astronomical Society.

[15]  G. Clementini,et al.  YMCA-1: A New Remote Star Cluster of the Milky Way?* * This work is based on INAF-VST guaranteed observing time under ESO program: 0104.D-0427(A). , 2021, Research Notes of the AAS.

[16]  Sergey E. Koposov,et al.  Eridanus IV: an Ultra-faint Dwarf Galaxy Candidate Discovered in the DECam Local Volume Exploration Survey , 2021, The Astrophysical Journal Letters.

[17]  Sergey E. Koposov,et al.  Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S 5) , 2021, The Astrophysical Journal.

[18]  Tenerife,et al.  Gaia early DR3 systemic motions of Local Group dwarf galaxies and orbital properties with a massive Large Magellanic Cloud , 2021, Astronomy & Astrophysics.

[19]  Sergey E. Koposov,et al.  The Magellanic Edges Survey -- II. Formation of the LMC's northern arm , 2021, 2106.03274.

[20]  Joana M. Oliveira,et al.  Stellar substructures in the periphery of the Magellanic Clouds with the VISTA hemisphere survey from the red clump and other tracers , 2021, Monthly Notices of the Royal Astronomical Society.

[21]  D. Nidever,et al.  The DECam Local Volume Exploration Survey: Overview and First Data Release , 2021, The Astrophysical Journal Supplement Series.

[22]  R. A. P. Oliveira,et al.  The VISCACHA survey , 2021, 2103.02600.

[23]  R. Kudritzki,et al.  A Distance Determination to the Small Magellanic Cloud with an Accuracy of Better than Two Percent Based on Late-type Eclipsing Binary Stars , 2020, The Astrophysical Journal.

[24]  A. Price-Whelan,et al.  Quantifying the Impact of the Large Magellanic Cloud on the Structure of the Milky Way’s Dark Matter Halo Using Basis Function Expansions , 2020, The Astrophysical Journal.

[25]  S. Majewski,et al.  Discovery of an Ultra-faint Stellar System near the Magellanic Clouds with the DECam Local Volume Exploration Survey , 2020, The Astrophysical Journal.

[26]  S. Majewski,et al.  SMASHing the low surface brightness SMC , 2020, 2008.00012.

[27]  G. Longo,et al.  A search for star clusters in the outskirts of the Large Magellanic Cloud: indication of clusters in the age gap , 2020, 2007.00341.

[28]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[29]  J. Frieman,et al.  A Deeper Look at DES Dwarf Galaxy Candidates: Grus i and Indus ii , 2020, The Astrophysical Journal.

[30]  M. Boylan-Kolchin,et al.  The Orbital Histories of Magellanic Satellites Using Gaia DR2 Proper Motions , 2020, The Astrophysical Journal.

[31]  S. Majewski,et al.  Two Ultra-faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey , 2019, The Astrophysical Journal.

[32]  J. Frieman,et al.  Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1 , 2019, The Astrophysical Journal.

[33]  D. Gerdes,et al.  Birds of a Feather? Magellan/IMACS Spectroscopy of the Ultra-faint Satellites Grus II, Tucana IV, and Tucana V , 2019, The Astrophysical Journal.

[34]  M. Walker,et al.  Stellar Density Profiles of Dwarf Spheroidal Galaxies , 2019, The Astrophysical Journal.

[35]  Samuel Hinton ChainConsumer: Corner plots, LaTeX tables and plotting walks , 2019 .

[36]  E. Bell,et al.  Detailed study of the Milky Way globular cluster Laevens 3 , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[38]  V. Belokurov,et al.  Limit on the LMC mass from a census of its satellites , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  Sergey E. Koposov,et al.  The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  F. Maia,et al.  An Updated Small Magellanic Cloud and Magellanic Bridge Catalog of Star Clusters, Associations, and Related Objects , 2019, The Astronomical Journal.

[41]  M. Boylan-Kolchin,et al.  Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[42]  R. Lupton,et al.  Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem , 2019, Publications of the Astronomical Society of Japan.

[43]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[44]  D. Tucker,et al.  A Faint Halo Star Cluster Discovered in the Blanco Imaging of the Southern Sky Survey , 2018, The Astrophysical Journal.

[45]  Sergey E. Koposov,et al.  The Morphology and Structure of Stellar Populations in the Fornax Dwarf Spheroidal Galaxy from Dark Energy Survey Data , 2018, The Astrophysical Journal.

[46]  P. Jablonka,et al.  Pristine dwarf galaxy survey – I. A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  S. Djorgovski,et al.  A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters , 2018, The Astrophysical Journal.

[48]  Sergey E. Koposov,et al.  Nine tiny star clusters inGaiaDR1, PS1, and DES , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  Chao Liu,et al.  Anisotropy of the Milky Way’s Stellar Halo Using K Giants from LAMOST and Gaia , 2018, The Astronomical Journal.

[50]  Joana M. Oliveira,et al.  The VMC survey – XXXI: The spatially resolved star formation history of the main body of the Small Magellanic Cloud , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  J. Navarro,et al.  The Missing Satellites of the Magellanic Clouds? Gaia Proper Motions of the Recently Discovered Ultra-faint Galaxies , 2018, The Astrophysical Journal.

[52]  D. Nidever,et al.  SMASHing the LMC: Mapping a Ring-like Stellar Overdensity in the LMC Disk , 2018, The Astrophysical Journal.

[53]  B. Willman,et al.  A Deeper Look at the New Milky Way Satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III , 2018, The Astrophysical Journal.

[54]  D. Nidever,et al.  SMASHing the LMC: A Tidally Induced Warp in the Outer LMC and a Large-scale Reddening Map , 2018, The Astrophysical Journal.

[55]  Sergey E. Koposov,et al.  Substructures and Tidal Distortions in the Magellanic Stellar Periphery , 2018, 1804.06431.

[56]  Sergey E. Koposov,et al.  Snake in the Clouds: a new nearby dwarf galaxy in the Magellanic bridge* , 2018, Monthly Notices of the Royal Astronomical Society.

[57]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[58]  T. Bitsakis,et al.  The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds , 2017, 1712.04974.

[59]  M. Schirmer,et al.  On the Nature of Ultra-faint Dwarf Galaxy Candidates. I. DES1, Eridanus III, and Tucana V , 2017, 1712.01439.

[60]  B. Willman,et al.  Deep Subaru Hyper Suprime-Cam Observations of Milky Way Satellites Columba I and Triangulum II , 2017, 1710.06444.

[61]  R. Nichol,et al.  Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey , 2017, 1709.05689.

[62]  Joana M. Oliveira,et al.  The VMC survey – XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids , 2017, 1707.04500.

[63]  R. Lupton,et al.  Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus~III , 2017, 1704.05977.

[64]  K. Bechtol,et al.  The predicted luminous satellite populations around SMC and LMC-mass galaxies - A missing satellite problem around the LMC? , 2017, 1703.05321.

[65]  P. Fosalba,et al.  A stellar overdensity associated with the Small Magellanic Cloud , 2017 .

[66]  S. Majewski,et al.  SMASH: Survey of the MAgellanic Stellar History , 2017, 1701.00502.

[67]  Sergey E. Koposov,et al.  At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data , 2016, 1605.05338.

[68]  C. Frenk,et al.  Identifying true satellites of the Magellanic Clouds. , 2016, 1605.03574.

[69]  V. Belokurov,et al.  A Magellanic origin of the DES dwarfs , 2016, 1603.04420.

[70]  Sergey E. Koposov,et al.  The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater , 2016, 1601.07178.

[71]  R. Nichol,et al.  Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data , 2015, 1508.02381.

[72]  L. Girardi,et al.  The VMC survey - XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud , 2015, 1501.05347.

[73]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[74]  P. Schipani,et al.  STEP: The VST survey of the SMC and the Magellanic Bridge. I. Overview and first results , 2014, 1405.1028.

[75]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[76]  D. D. Carpintero,et al.  On a possible origin for the lack of old star clusters in the Small Magellanic Cloud , 2013, 1307.6231.

[77]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[78]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[79]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[80]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[81]  B. Willman,et al.  SEGUE 3: AN OLD, EXTREMELY LOW LUMINOSITY STAR CLUSTER IN THE MILKY WAY's HALO , 2011, 1107.3151.

[82]  G. Clementini,et al.  The VMC survey: I. Strategy and first data , 2010, 1012.5193.

[83]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[84]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[85]  E. Grebel,et al.  AN ACCURATE AGE DETERMINATION FOR THE SMALL MAGELLANIC CLOUD STAR CLUSTER NGC 121 WITH THE HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS , 2008 .

[86]  W. B. Burton,et al.  The Origin of the Magellanic Stream and Its Leading Arm , 2007, 0706.1578.

[87]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[88]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[89]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[90]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[91]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE DISCOVERY OF TWO EXTREMELY LOW LUMINOSITY MILKY WAY GLOBULAR CLUSTERS , 2022 .

[92]  Edinburgh Research Explorer Discovery of two neighboring satellites in the Carina constellation with MagLiteS , 2022 .