Interactive, knowledge-guided visualization of 3D medical imagery

Abstract One of the most important and difficult decision-making tasks is that of interpreting three-dimensional (3D) medical imagery. This information-intensive task typically requires expediency, accuracy and reliability in both the visual presentation as well as in the interpretation of complex information. We present an approach that facilitates this task by using domain knowledge to assist in the interpretation and visualization of 3D cardiac imagery. The objective is to provide the clinician with a more efficient, reliable, comprehensive, and clinically useful manner with which to accurately interpret and display large amounts of complex information. These objectives are met by capturing and representing the visual reasoning process in a computational model, and providing the user with an intuitive graphical and textual representation of the data, as well as explanations, justifications, and interactive data visualizations. The approach is illustrated with cardiovascular 3D SPECT tomographic perfusion imagery, a technique aimed at diagnosing heart disease.

[1]  R. Mullick,et al.  Visualization of multimodality cardiac imagery , 1990, IEEE Transactions on Biomedical Engineering.

[2]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[3]  E. Depuey,et al.  Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. , 1988, Circulation.

[4]  H. Simon,et al.  Perception in chess , 1973 .

[5]  Norberto F. Ezquerra,et al.  Automatic determination of LV orientation from SPECT data , 1995, IEEE Trans. Medical Imaging.

[6]  Drew McDermott,et al.  Introduction to artificial intelligence , 1986, Addison-Wesley series in computer science.

[7]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[8]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[9]  Lorenz P. Schrenk,et al.  Aiding the decision maker--a decision process model. , 1969, Ergonomics.

[10]  Norberto F. Ezquerra,et al.  PERFEX: An expert system for interpreting 3D myocardial perfusion , 1993 .

[11]  R. Pettigrew,et al.  Three-dimensional displays of left ventricular epicardial surface from standard cardiac SPECT perfusion quantification techniques. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Arie E. Kaufman Volume visualization , 1996, CSUR.

[13]  Steven F. Roth,et al.  A Visualization System on Every Desk - Keeping it Simple , 1994, IEEE Visualization.

[14]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[15]  Peter R. Keller,et al.  Visual cues - practical data visualization , 1993 .

[16]  B. H. McCormick,et al.  Visualization in scientific computing , 1995 .

[17]  Norberto F. Ezquerra,et al.  Visualization of cardiovascular nuclear medicine tomographic perfusion studies , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[18]  Patrick E. Mantey View of visualization: its origins, development, and new directions , 1994, Electronic Imaging.

[19]  Jayaram K. Udupa,et al.  Fast visualization, manipulation, and analysis of binary volumetric objects , 1991, IEEE Computer Graphics and Applications.

[20]  Mary Anne Buttigieg,et al.  Object Displays Do Not Always Support Better Integrated Task Performance , 1989 .

[21]  Arthur D. Fisk,et al.  Human Factors Goes to the Gridiron , 1995 .

[22]  B.L. Evans,et al.  Knowledge-based visualization of myocardial perfusion tomographic images , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[23]  G. Diamond,et al.  Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. , 1979, The New England journal of medicine.

[24]  Ken Brodlie,et al.  Scientific visualization: techniques and applications , 1992 .

[25]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[26]  Serge Garlatti,et al.  Information system to manage anatomical knowledge and image data about brain , 1994, Other Conferences.

[27]  W. A. Hanson,et al.  Interactive 3D segmentation of MRI and CT volumes using morphological operations. , 1992, Journal of computer assisted tomography.

[28]  Ivars Peterson Going for GLITZ , 1993 .

[29]  B Gibaud,et al.  Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects. , 1993, European journal of radiology.

[30]  Ben Shneiderman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction , 1998 .

[31]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[32]  R A Robb,et al.  Interactive display and analysis of 3-D medical images. , 1989, IEEE transactions on medical imaging.

[33]  Neff Walker,et al.  The effects of hierarchical structure and visualization ability on computerized information retrieval , 1992, Int. J. Hum. Comput. Interact..

[34]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[35]  E. Rogers,et al.  Visual protocol collection for the enhancement of the radiological diagnostic process , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[36]  Larry S. Yaeger,et al.  Visualization of natural phenomena , 1993 .

[37]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[38]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[39]  Neff Walker,et al.  A classification of visual representations , 1994, CACM.

[40]  E. V. Garcia,et al.  Artificial intelligence in nuclear medicine imaging , 1989 .

[41]  Serge Garlatti,et al.  An Hypermedia System to Manage Anatomical Knowledge about Brain , 1993 .

[42]  Penelope M. Sanderson,et al.  Predicting fault diagnosis performance: why are some bugs hard to find? , 1990, IEEE Trans. Syst. Man Cybern..

[43]  J A Newell,et al.  A knowledge-based system paradigm for automatic interpretation of CT scans. , 1991, Medical informatics = Medecine et informatique.

[44]  Penelope M. Sanderson,et al.  The Human Planning and Scheduling Role in Advanced Manufacturing Systems: An Emerging Human Factors Domain , 1989 .

[45]  Andreas Pommert,et al.  Spatial Knowledge Representation for Visualization of Human Anatomy and Function , 1993, IPMI.

[46]  J. D. Pearlman,et al.  Visualization in medicine: multidimensional object presentation methods for computer displays and volume holography , 1995, Proceedings 1995 Biomedical Visualization.

[47]  R McGill,et al.  Graphical Perception and Graphical Methods for Analyzing Scientific Data , 1985, Science.

[48]  C. Barillot,et al.  Surface and volume rendering techniques to display 3-D data , 1993, IEEE Engineering in Medicine and Biology Magazine.

[49]  Norberto F. Ezquerra,et al.  Interactively deformable models for surgery simulation , 1993, IEEE Computer Graphics and Applications.

[50]  Norberto F. Ezquerra,et al.  Knowledge-Guided Segmentation of 3D Imagery , 1996, CVGIP Graph. Model. Image Process..

[51]  Neff Walker,et al.  Classifying visual knowledge representations: a foundation for visualization research , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[52]  Jens Rasmussen,et al.  Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering , 1986 .