Mirabolic Satake equivalence and supergroups

We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of $\operatorname{GL}(N-1,{\mathbb {C}}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $\operatorname{GL}_N$. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.

[1]  E. Witten,et al.  Branes and Supergroups , 2014, 1410.1175.

[2]  D. Gaitsgory Quantum Langlands Correspondence , 2016, 1601.05279.

[3]  D. Gaitsgory Twisted Whittaker model and factorizable sheaves , 2007, 0705.4571.

[4]  T. Shoji Green functions attached to limit symbols , 2004 .

[5]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[6]  D. Gaitsgory Sheaves of categories and the notion of 1-affineness , 2013, 1306.4304.

[7]  S. Riche,et al.  Linear Koszul duality , 2008, Compositio Mathematica.

[8]  I. Mirkovic,et al.  Geometric Langlands duality and representations of algebraic groups over commutative rings , 2004, math/0401222.

[9]  M. Finkelberg,et al.  A quasi-coherent description of the the category of D-mod(Gr$_{GL(n)}$) , 2018, 1809.10774.

[10]  Roman Travkin Mirabolic Robinson–Shensted–Knuth correspondence , 2008 .

[11]  Yifei Zhao Quantum parameters of the geometric Langlands theory , 2017, 1708.05108.

[12]  Yifei Zhao NOTES ON QUANTUM PARAMETERS (GL-2) , 2018 .

[13]  D. Gaitsgory,et al.  Differential operators on the loop group via chiral algebras , 2000 .

[14]  D. Gaitsgory,et al.  Another realization of the category of modules over the small quantum group , 2000 .

[15]  V. Ginzburg,et al.  Mirabolic affine Grassmannian and character sheaves , 2008, 0802.1652.

[16]  Hyperbolic localization of intersection cohomology , 2002, math/0202251.

[17]  R. Bezrukavnikov On two geometric realizations of an affine Hecke algebra , 2012, 1209.0403.

[18]  Hervé Jacquet,et al.  Rankin-Selberg Convolutions , 1983 .

[19]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[20]  V. Drinfeld,et al.  ON A THEOREM OF BRADEN , 2013, 1308.3786.

[21]  Simon Schieder Monodromy and Vinberg fusion for the principal degeneration of the space of G-bundles , 2017, 1701.01898.

[22]  M. Finkelberg,et al.  Kostka-Shoji polynomials and Lusztig's convolution diagram , 2016, 1605.05806.

[23]  Y. Sakellaridis Spherical functions on spherical varieties , 2009, 0905.4244.

[24]  E. Witten,et al.  S-duality of boundary conditions in N=4 super Yang-Mills theory , 2008, 0807.3720.

[25]  Lieven Le Bruyn,et al.  Semisimple representations of quivers , 1990 .

[26]  V. F. Mikhail,et al.  Equivariant Satake category and Kostant-Whittaker reduction , 2008 .

[27]  D. Gaitsgory The local and global versions of the Whittaker category , 2018, Pure and Applied Mathematics Quarterly.