Basic III–V nitride research – past, present and future

Abstract This report concentrates on a few selected electronic properties of III-nitrides, and illustrates the large uncertainties in the physical quantities that exist. A considerable improvement in material quality, in terms of both structural and point defect densities, is needed before more reliable data can be obtained.

[1]  R. Dingle,et al.  Luminescence of Zn‐ and Cd‐doped GaN , 1972 .

[2]  Bo Monemar,et al.  Fundamental energy gap of GaN from photoluminescence excitation spectra , 1974 .

[3]  C. Kuo,et al.  ACTIVATION ENERGIES OF SI DONORS IN GAN , 1996 .

[4]  M. Asif Khan,et al.  Metastability and persistent photoconductivity in Mg‐doped p‐type GaN , 1996 .

[5]  M. Shur,et al.  Cyclotron resonance and quantum Hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface , 1997 .

[6]  Marc Ilegems,et al.  Luminescence of Be‐ and Mg‐doped GaN , 1973 .

[7]  Beaumont,et al.  Optical detection of electron nuclear double resonance on a residual donor in wurtzite GaN. , 1996, Physical review. B, Condensed matter.

[8]  Kovalev,et al.  Properties of the yellow luminescence in undoped GaN epitaxial layers. , 1995, Physical review. B, Condensed matter.

[9]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[10]  J. Pankove,et al.  Absorption Edge of Impure Gallium Arsenide , 1965 .

[11]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[12]  J. Bergman,et al.  PHOTOLUMINESCENCE RELATED TO THE TWO-DIMENSIONAL ELECTRON GAS AT A GAN/ALGAN HETEROINTERFACE , 1996 .

[13]  Bo Monemar,et al.  Luminescence in epitaxial GaN : Cd , 1974 .

[14]  Song,et al.  Binding energy for the intrinsic excitons in wurtzite GaN. , 1996, Physical review. B, Condensed matter.

[15]  Eugene E. Haller,et al.  On p-type doping in GaN—acceptor binding energies , 1995 .

[16]  Theodore D. Moustakas,et al.  Metal contacts to gallium nitride , 1993 .

[17]  B. Monemar,et al.  Properties of VPE‐grown GaN doped with Al and some iron‐group metals , 1979 .

[18]  E. Haller,et al.  PRESSURE INDUCED DEEP GAP STATE OF OXYGEN IN GAN , 1997 .

[19]  Binet,et al.  Electric field effects on excitons in gallium nitride. , 1996, Physical Review B (Condensed Matter).

[20]  M. Tischler,et al.  TWO-DIMENSIONAL ELECTRON GAS PROPERTIES OF ALGAN/GAN HETEROSTRUCTURES GROWN ON 6H-SIC AND SAPPHIRE SUBSTRATES , 1996 .

[21]  Oliver Brandt,et al.  High p‐type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant , 1996 .

[22]  J. Pankove,et al.  Deep levels and persistent photoconductivity in GaN thin films , 1997 .

[23]  David C. Look,et al.  Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements , 1997 .

[24]  D. C. Reynolds,et al.  Ground and excited state exciton spectra from GaN grown by molecular‐beam epitaxy , 1996 .

[25]  S. Yoshida,et al.  Epitaxial growth of GaN/AlN heterostructures , 1983 .

[26]  John E. Bowers,et al.  Radiative recombination lifetime measurements of InGaN single quantum well , 1996 .

[27]  D. Chadi,et al.  Stability of deep donor and acceptor centers in GaN, AlN, and BN , 1997 .

[28]  H. K. Ng,et al.  Magneto‐optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance , 1996 .

[29]  Kovalev,et al.  Exciton fine structure in undoped GaN epitaxial films. , 1996, Physical review. B, Condensed matter.

[30]  Shuji Nakamura,et al.  Recombination dynamics of localized excitons in In 0.20 Ga 0.80 N- In 0.05 Ga 0.95 N multiple quantum wells , 1997 .

[31]  Marc Ilegems,et al.  Electrical properties of n-type vapor-grown gallium nitride , 1973 .

[32]  Patricia M. Mooney,et al.  Deep donor levels (DX centers) in III‐V semiconductors , 1990 .

[33]  H. Morkoç,et al.  Excitonic recombination in GaN grown by molecular beam epitaxy , 1995 .

[34]  M. Asif Khan,et al.  Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions , 1992 .

[35]  J. Hutchby,et al.  Photoluminescence of ion‐implanted GaN , 1976 .

[36]  Materials design for the fabrication of low-resistivity p-type GaN using a codoping method , 1997 .

[37]  Van de Walle CG,et al.  Atomic geometry and electronic structure of native defects in GaN. , 1994, Physical review. B, Condensed matter.

[38]  G. A. Slack,et al.  Growth of high purity AlN crystals , 1976 .

[39]  C. T. Foxon,et al.  Evidence for Shallow Acceptor Levels in MBE Grown GaN , 1996 .

[40]  Yang,et al.  Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence. , 1996, Physical review. B, Condensed matter.

[41]  Jin Seo Im,et al.  Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN , 1997 .

[42]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.

[43]  Isamu Akasaki,et al.  Growth and Luminescence Properties of Mg‐Doped GaN Prepared by MOVPE , 1990 .

[44]  Y. T. Rebane,et al.  Dislocation Luminescence in Wurtzite GaN , 1996 .

[45]  Suski,et al.  Towards the identification of the dominant donor in GaN. , 1995, Physical review letters.

[46]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[47]  Hadis Morkoç,et al.  Nature of Mg impurities in GaN , 1996 .

[48]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .