The source area influencing a measurement in the Planetary Boundary Layer: The “footprint” and the “distribution of contact distance”

This paper considers the ground area which affects the properties of fluid parcels observed at a given spot in the Planetary Boundary Layer (PBL). We examine two source-area functions; the “footprint,” giving the source area for a measurement of vertical flux: and the distribution of “contact distance”, the distance since a particle observed aloft last made contact with the surface. We explain why the distribution of contact distance extends vastly farther upwind than the footprint, and suggest for the extent of the footprint the inequalities: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvam% aalaaabaGaamiAaaqaaiabeo8aZnaaBaaaleaacaWGxbaabeaakiaa% cIcacaWGObGaaiykaaaacqGH8aapcaWG4bGaeyipaWJaamyvaKazaa% iadaGabaqaamaaDaaajqwaacqaaiaadIgacaGGVaGabmOEayaacaGa% aiilaiaabccacaGGVbGaaiiDaiaacIgacaGGLbGaaiOCaiaacEhaca% GGPbGaai4CaiaacwgaaeaacaWGubWaaSbaaKazcaiabaGaamitaaqa% baqcKfaGaiaacIcacaWGObGaaiykaiaabYcacaqGGaGaaeiAaiaabc% cacaGGHbGaaiOyaiaac+gacaGG2bGaaiyzaiaabccacaGGZbGaaiyD% aiaackhacaGGMbGaaiyyaiaacogacaGGLbGaeyOeI0IaaiiBaiaacg% gacaGG5bGaaiyzaiaackhaaaaajqgaacGaay5EaaaakeaaaeaacaGG% 8bGaamyEaiaacYhacqGH8aapcqaHdpWCdaWgaaWcbaGaamODaaqaba% GccaGGOaGaamiAaiaacMcadaWcaaqaaiaadIhaaeaacaWGvbaaaaaa% aa!7877!\[\begin{array}{l} U\frac{h}{{\sigma _W (h)}} < x < U\left\{ {_{h/\dot z,{\rm{ }}otherwise}^{T_L (h){\rm{, h }}above{\rm{ }}surface - layer} } \right. \\ \\ |y| < \sigma _v (h)\frac{x}{U} \\ \end{array}\] where U is the mean streamwise (x) velocity, h is the observation height, ΤL is the Lagrangian timescale, Σv and Σw are the standard deviations of the cross-stream horizontal (y) and vertical (z) velocity fluctuations, and ż is the Lagrangian Similarity prediction for the rate of rise of the centre of gravity of a puff released at ground.Simple analytical solutions for the contact-time and the footprint are derived, by treating the PBL as consisting of two sub-layers. The contact-time solutions agree very well with the predictions of a Lagrangian stochastic model, which we adopt in the absence of measurements as our best estimate of reality, but the footprint solution offers no improvement over the above inequality.

[1]  M. Raupach,et al.  Experiments on scalar dispersion within a model plant canopy, part III: An elevated line source , 1986 .

[2]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[3]  B. Hicks Behavior of Turbulence Statistics in the Convective Boundary Layer , 1985 .

[4]  D. Thomson,et al.  Random walk modelling of diffusion in inhomogeneous turbulence , 1984 .

[5]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[6]  Jeffrey Weil,et al.  A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion Using a Lagrangian Stochastic Model , 1990 .

[7]  D. Lenschow,et al.  The characteristics of turbulent velocity components in the surface layer under convective conditions , 1977 .

[8]  D. Thomson,et al.  Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance , 1983 .

[9]  D. Thomson Criteria for the selection of stochastic models of particle trajectories in turbulent flows , 1987, Journal of Fluid Mechanics.

[10]  Peter A. Coppin,et al.  Experiments on scalar dispersion within a model plant canopy part II: An elevated plane source , 1986 .

[11]  G. W. Thurtell,et al.  Numerical simulation of particle trajectories in inhomogeneous turbulence, III: Comparison of predictions with experimental data for the atmospheric surface layer , 1981 .

[12]  John D. Wilson An approximate analytical solution to the diffusion equation for short-range dispersion from a continuous ground-level source , 1982 .

[13]  Monique Y. Leclerc,et al.  Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation , 1990 .

[14]  Hans Peter Schmid,et al.  A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain , 1990 .

[15]  Monique Y. Leclerc,et al.  Footprint prediction of scalar fluxes using a Markovian analysis , 1990 .

[16]  E. F. Bradley,et al.  An alternative analysis of flux-gradient relationships at the 1976 ITCE , 1982 .

[17]  B. L. Sawford,et al.  Lagrangian Statistical Simulation of Concentration Mean and Fluctuation Fields. , 1985 .

[18]  J. Gash,et al.  A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements , 1986 .

[19]  B. Sawford,et al.  Lagrangian Stochastic Analysis of Flux-Gradient Relationships in the Convective Boundary Layer , 1987 .

[20]  F. Pasquill,et al.  Some aspects of boundary layer description , 1972 .

[21]  Rex Britter,et al.  A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer , 1989 .