Cortical encoding of pitch: Recent results and open questions

[1]  Kerry M. M. Walker,et al.  Neural Ensemble Codes for Stimulus Periodicity in Auditory Cortex , 2010, The Journal of Neuroscience.

[2]  Kerry M. M. Walker,et al.  Pitch discrimination by ferrets for simple and complex sounds. , 2009, The Journal of the Acoustical Society of America.

[3]  Bart Vanrumste,et al.  EEG/MEG Source Imaging: Methods, Challenges, and Open Issues , 2009, Comput. Intell. Neurosci..

[4]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[5]  B. Kollmeier,et al.  Dichotic pitch activates pitch processing centre in Heschl's gyrus , 2009, NeuroImage.

[6]  H. Dinse,et al.  A Map of Periodicity Orthogonal to Frequency Representation in the Cat Auditory Cortex , 2009, Frontiers in integrative neuroscience.

[7]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[8]  Noël Staeren,et al.  Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex , 2009, Current Biology.

[9]  N. McLachlan A computational model of human pitch strength and height judgments , 2009, Hearing Research.

[10]  Kerry M. M. Walker,et al.  Interdependent Encoding of Pitch, Timbre, and Spatial Location in Auditory Cortex , 2009, The Journal of Neuroscience.

[11]  I. Peretz,et al.  Evidence for the role of the right auditory cortex in fine pitch resolution , 2008, Neuropsychologia.

[12]  M. Mishkin,et al.  Early stages of melody processing: stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. , 2008, Journal of neurophysiology.

[13]  D. Bendor,et al.  Neural coding of temporal information in auditory thalamus and cortex , 2008, Neuroscience.

[14]  Troy A Hackett,et al.  Anatomical organization of the auditory cortex. , 2008, Journal of the American Academy of Audiology.

[15]  D. Bendor,et al.  Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. , 2008, Journal of neurophysiology.

[16]  D. Hall,et al.  Pitch Processing Sites in the Human Auditory Brain , 2008, Cerebral cortex.

[17]  Edward L. Bartlett,et al.  Neural coding of temporal information in auditory thalamus and cortex , 2008, Neuroscience.

[18]  T. Rinne,et al.  Selective attention to sound location or pitch studied with event‐related brain potentials and magnetic fields , 2008, The European journal of neuroscience.

[19]  Sridhar Kalluri,et al.  Perception and cortical neural coding of harmonic fusion in ferrets. , 2008, The Journal of the Acoustical Society of America.

[20]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[21]  Frank W. Ohl,et al.  Global versus local processing of frequency-modulated tones in gerbils: An animal model of lateralized auditory cortex functions , 2008, Proceedings of the National Academy of Sciences.

[22]  S. Lomber,et al.  Double dissociation of 'what' and 'where' processing in auditory cortex , 2008, Nature Neuroscience.

[23]  Israel Nelken,et al.  Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals. , 2008, Journal of neurophysiology.

[24]  Robert J. Zatorre,et al.  Depth electrode recordings show double dissociation between pitch processing in lateral Heschl’s gyrus and sound onset processing in medial Heschl’s gyrus , 2008, Experimental Brain Research.

[25]  W. Shofner,et al.  Pitch perception in chinchillas (Chinchilla laniger): stimulus generalization using rippled noise. , 2007, Journal of comparative psychology.

[26]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[27]  Charles C Lee,et al.  The distributed auditory cortex , 2007, Hearing Research.

[28]  Christopher J Plack,et al.  The human ‘pitch center’ responds differently to iterated noise and Huggins pitch , 2007, Neuroreport.

[29]  H. Scheich,et al.  Dual Time Scales for Categorical Decision Making in Auditory Cortex , 2006, Current Biology.

[30]  Catherine Semal,et al.  Individual differences in the sensitivity to pitch direction. , 2006, The Journal of the Acoustical Society of America.

[31]  M. Merzenich,et al.  Experience-Dependent Adult Cortical Plasticity Requires Cognitive Association between Sensation and Reward , 2006, Neuron.

[32]  E. Schellenberg,et al.  Song recognition by children and adolescents with cochlear implants. , 2006, Journal of speech, language, and hearing research : JSLHR.

[33]  T. Griffiths,et al.  Music and the brain: disorders of musical listening. , 2006, Brain : a journal of neurology.

[34]  B. Shinn-Cunningham,et al.  Task-modulated “what” and “where” pathways in human auditory cortex , 2006, Proceedings of the National Academy of Sciences.

[35]  David Poeppel,et al.  Neural response correlates of detection of monaurally and binaurally created pitches in humans. , 2006, Cerebral cortex.

[36]  Michael M Merzenich,et al.  Perceptual Learning Directs Auditory Cortical Map Reorganization through Top-Down Influences , 2006, The Journal of Neuroscience.

[37]  R. Patterson,et al.  The effect of temporal context on the sustained pitch response in human auditory cortex. , 2006, Cerebral cortex.

[38]  A. J. King,et al.  The ferret auditory cortex: descending projections to the inferior colliculus. , 2006, Cerebral cortex.

[39]  Josef Syka,et al.  Effect of auditory cortex lesions on the discrimination of frequency‐modulated tones in rats , 2006, The European journal of neuroscience.

[40]  L. Braida,et al.  Neurophysiology and Neuroanatomy of Pitch Perception: Auditory Cortex , 2005, Annals of the New York Academy of Sciences.

[41]  M. P. Gelfer,et al.  The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels. , 2005, Journal of voice : official journal of the Voice Foundation.

[42]  I. Nelken,et al.  Functional organization of ferret auditory cortex. , 2005, Cerebral cortex.

[43]  Norman M Weinberger,et al.  Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Yu Sato,et al.  Interaction of excitatory and inhibitory frequency-receptive fields in determining fundamental frequency sensitivity of primary auditory cortex neurons in awake cats. , 2005, Cerebral cortex.

[45]  André Rupp,et al.  Neuromagnetic responses reflect the temporal pitch change of regular interval sounds , 2005, NeuroImage.

[46]  D. Bendor,et al.  The neuronal representation of pitch in primate auditory cortex , 2005, Nature.

[47]  J. Fritz,et al.  Differential Dynamic Plasticity of A1 Receptive Fields during Multiple Spectral Tasks , 2005, The Journal of Neuroscience.

[48]  D. Kipke,et al.  Enhanced contrast sensitivity in auditory cortex as cats learn to discriminate sound frequencies. , 2005, Brain research. Cognitive brain research.

[49]  Werner Lutzenberger,et al.  MEG responses to rippled noise and Huggins pitch reveal similar cortical representations , 2005, Neuroreport.

[50]  Richard E. Turner,et al.  The processing and perception of size information in speech sounds. , 2005, The Journal of the Acoustical Society of America.

[51]  D. Irvine,et al.  Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. , 2004, Cerebral cortex.

[52]  D. McAlpine Neural sensitivity to periodicity in the inferior colliculus: evidence for the role of cochlear distortions. , 2004, Journal of neurophysiology.

[53]  Andrew J Oxenham,et al.  A Neural Representation of Pitch Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic Resonance Imaging , 2004, The Journal of Neuroscience.

[54]  R. Zatorre,et al.  Right temporal cortex is critical for utilization of melodic contextual cues in a pitch constancy task. , 2004, Brain : a journal of neurology.

[55]  Henning Scheich,et al.  Macaque monkeys discriminate pitch relationships , 2004, Cognition.

[56]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[57]  R. Patterson,et al.  Analyzing Pitch Chroma and Pitch Height in the Human Brain , 2003, Annals of the New York Academy of Sciences.

[58]  Richard Ragot,et al.  Tonotopic cortical representation of periodic complex sounds , 2003, Human brain mapping.

[59]  T. Griffiths,et al.  Distinct Mechanisms for Processing Spatial Sequences and Pitch Sequences in the Human Auditory Brain , 2003, The Journal of Neuroscience.

[60]  B Lütkenhöner,et al.  Neuromagnetic evidence for a pitch processing center in Heschl's gyrus. , 2003, Cerebral cortex.

[61]  Xiaoqin Wang,et al.  Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. , 2003, Journal of neurophysiology.

[62]  S. Kojima,et al.  Identification of vocalizers by pant hoots, pant grunts and screams in a chimpanzee , 2003, Primates.

[63]  J. Shepherd,et al.  The pitch of maternal voice: a comparison of mothers suffering from depressed mood and non-depressed mothers reading books to their infants. , 2003, Journal of child psychology and psychiatry, and allied disciplines.

[64]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[65]  W. Shofner Perception of the periodicity strength of complex sounds by the chinchilla , 2002, Hearing Research.

[66]  Hiroki Koda,et al.  A Pattern of Common Acoustic Modification by Human Mothers to Gain Attention of a Child and by Macaques of others in Their Group , 2002, Psychological reports.

[67]  M. Leek,et al.  Auditory temporal resolution in birds: discrimination of harmonic complexes. , 2002, The Journal of the Acoustical Society of America.

[68]  Anne K. Churchland,et al.  Neural correlates of instrumental learning in primary auditory cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Langner,et al.  Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger) , 2002, Hearing Research.

[70]  Holger Schulze,et al.  Superposition of horseshoe‐like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil , 2002, The European journal of neuroscience.

[71]  Norman M Weinberger,et al.  Long-Term Consolidation and Retention of Learning-Induced Tuning Plasticity in the Auditory Cortex of the Guinea Pig , 2002, Neurobiology of Learning and Memory.

[72]  Roy D. Patterson,et al.  Sustained Magnetic Fields Reveal Separate Sites for Sound Level and Temporal Regularity in Human Auditory Cortex , 2002, NeuroImage.

[73]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[74]  G. Gerstein,et al.  Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. , 2001, Journal of neurophysiology.

[75]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[76]  G L Gerstein,et al.  Role of mammalian auditory cortex in the perception of elementary sound properties. , 2001, Journal of neurophysiology.

[77]  R. Patterson,et al.  Encoding of the temporal regularity of sound in the human brainstem , 2001, Nature Neuroscience.

[78]  A. Izumi Relative pitch perception in Japanese monkeys (Macaca fuscata). , 2001, Journal of comparative psychology.

[79]  H. Heffner,et al.  An investigation of sensory deficits underlying the aphasia-like behavior of macaques with auditory cortex lesions , 2001, Neuroreport.

[80]  A. Izumi,et al.  Japanese monkeys perceive sensory consonance of chords. , 2000, The Journal of the Acoustical Society of America.

[81]  W. Shofner Comparison of frequency discrimination thresholds for complex and single tones in chinchillas , 2000, Hearing Research.

[82]  J. D. Crawford,et al.  Auditory discrimination in a sound-producing electric fish (Pollimyrus): tone frequency and click-rate difference detection. , 2000, The Journal of the Acoustical Society of America.

[83]  Jacquelyne J. Rivera,et al.  Music perception and octave generalization in rhesus monkeys. , 2000, Journal of experimental psychology. General.

[84]  R. Patterson,et al.  The lower limit of pitch as determined by rate discrimination. , 2000, The Journal of the Acoustical Society of America.

[85]  H Scheich,et al.  Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections , 2000, The European journal of neuroscience.

[86]  I. Johnsrude,et al.  A common neural substrate for the analysis of pitch and duration pattern in segmented sound? , 1999, Neuroreport.

[87]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[88]  Richard G. Lanyon,et al.  Effects of altering spectral cues in infancy on horizontal and vertical sound localization by adult ferrets. , 1999, Journal of neurophysiology.

[89]  H. Scheich,et al.  Processing of sound sequences in macaque auditory cortex: response enhancement. , 1999, Journal of neurophysiology.

[90]  Claude Alain,et al.  Global and local processing of musical sequences: an event-related brain potential study. , 1999, Neuroreport.

[91]  Karl J. Friston,et al.  The Relationship Between Synchronization Among Neuronal Populations and Their Mean Activity Levels , 1999, Neural Computation.

[92]  M Steinschneider,et al.  Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. , 1998, The Journal of the Acoustical Society of America.

[93]  R. Carlyon Comments on "A unitary model of pitch perception" [J. Acoust. Soc. Am. 102, 1811-1820 (1997)]. , 1998, The Journal of the Acoustical Society of America.

[94]  M. Kilgard,et al.  Cortical map reorganization enabled by nucleus basalis activity. , 1998, Science.

[95]  Mitchell Steinschneider,et al.  Pitch vs. spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey , 1998, Brain Research.

[96]  T. Wagner,et al.  Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils , 1998, Behavioural Brain Research.

[97]  R. Dooling,et al.  Detection of changes in timbre and harmonicity in complex sounds by zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). , 1998, Journal of comparative psychology.

[98]  R. Meddis,et al.  A unitary model of pitch perception. , 1997, The Journal of the Acoustical Society of America.

[99]  H. Scheich,et al.  Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil , 1997, Journal of Comparative Physiology A.

[100]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[101]  S. H. Hulse,et al.  Auditory discrimination of chord-based spectral structures by European starlings ( Sturnus vulgaris ) , 1995 .

[102]  S Grossberg,et al.  A spectral network model of pitch perception. , 1995, The Journal of the Acoustical Society of America.

[103]  R. Carlyon,et al.  The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. , 1994, The Journal of the Acoustical Society of America.

[104]  David B. Moody Detection and discrimination of amplitude-modulated signals by macaque monkeys. , 1994, The Journal of the Acoustical Society of America.

[105]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  W. S. Rhode,et al.  Lateral suppression and inhibition in the cochlear nucleus of the cat. , 1994, Journal of neurophysiology.

[107]  Henning Scheich,et al.  Functional Organization of Auditory Cortex in the Mongolian Gerbil (Meriones unguiculatus). I. Electrophysiological Mapping of Frequency Representation and Distinction of Fields , 1993, The European journal of neuroscience.

[108]  J. Edeline,et al.  Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. , 1993, Behavioral neuroscience.

[109]  M. Merzenich,et al.  Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  D. Irvine,et al.  Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the ‘isofrequency’ dimension , 1992, Hearing Research.

[111]  D A Conner,et al.  Validity and reliability of nonverbal voice measures as indicators of stressor-provoked anxiety. , 1992, Research in nursing & health.

[112]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[113]  J. Pierce Periodicity and pitch perception. , 1991, The Journal of the Acoustical Society of America.

[114]  C. Schreiner,et al.  Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. , 1991, Journal of neurophysiology.

[115]  Norman M. Weinberger,et al.  Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig , 1990, Brain Research.

[116]  L. Demany,et al.  The Upper Limit of "Musical" Pitch , 1990 .

[117]  H. Damasio,et al.  Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions , 1990, Brain and Language.

[118]  A R Palmer,et al.  Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/. , 1990, The Journal of the Acoustical Society of America.

[119]  D. Schwarz,et al.  Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). , 1990, Journal of neurophysiology.

[120]  H. Naritomi,et al.  Subcortical auditory agnosia , 1990, Brain and Language.

[121]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[122]  Pierre L. Divenyi,et al.  Nonlinguistic auditory capabilities in aphasia , 1989, Brain and Language.

[123]  D. A. Nelson Song frequency as a cue for recognition of species and individuals in the field sparrow (Spizella pusilla). , 1989, Journal of comparative psychology.

[124]  S. H. Hulse,et al.  Relative pitch perception in the European starling (Sturnus vulgaris): further evidence for an elusive phenomenon. , 1989, Journal of experimental psychology. Animal behavior processes.

[125]  C. Schreiner,et al.  Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. , 1988, Journal of neurophysiology.

[126]  C. Schreiner,et al.  Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. , 1988, Journal of neurophysiology.

[127]  R. Zatorre,et al.  Pitch perception of complex tones and human temporal-lobe function. , 1988, The Journal of the Acoustical Society of America.

[128]  D. Schwarz,et al.  Perception of the missing fundamental in nonhuman primates. , 1988, The Journal of the Acoustical Society of America.

[129]  B. Volpe,et al.  Selective loss of complex-pitch or speech discrimination after unilateral lesion , 1988, Brain and Language.

[130]  M. R. D'Amato,et al.  A Search for Tonal Pattern Perception in Cebus Monkeys: Why Monkeys Can't Hum a Tune , 1988 .

[131]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[132]  J. Cynx,et al.  Perception of missing fundamental by a species of songbird (Sturnus vulgaris). , 1986, Journal of comparative psychology.

[133]  William A. Yost,et al.  Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system , 1983, Hearing Research.

[134]  R. Dooling,et al.  Amplitude modulation thresholds for the parakeet (Melopsittacus undulatus) , 1981, Journal of comparative physiology.

[135]  D. H. Johnson,et al.  The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. , 1980, The Journal of the Acoustical Society of America.

[136]  I. Whitfield,et al.  Auditory cortex and the pitch of complex tones. , 1980, The Journal of the Acoustical Society of America.

[137]  I. Whitfield,et al.  Perception of the missing fundamental by cats. , 1976, The Journal of the Acoustical Society of America.

[138]  D. K. Morest,et al.  The neuronal architecture of the cochlear nucleus of the cat , 1974, The Journal of comparative neurology.

[139]  J. L. Goldstein An optimum processor theory for the central formation of the pitch of complex tones. , 1973, The Journal of the Acoustical Society of America.

[140]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[141]  Robert R. Capranica,et al.  Vocal Response of the Bullfrog to Natural and Synthetic Mating Calls , 1966 .

[142]  W. Cn,et al.  Auditory areas I, II, and Ep: cochlear representation, afferent paths and interconnections. , 1960 .

[143]  E. M. Cramer,et al.  Creation of Pitch through Binaural Interaction , 1958 .

[144]  J. Licklider,et al.  A duplex theory of pitch perception , 1951, Experientia.

[145]  H. Scheich,et al.  Tone-sequence analysis in the auditory cortex of awake macaque monkeys , 2007, Experimental Brain Research.

[146]  Alain de Cheveigné,et al.  Pitch perception models , 2005 .

[147]  M. Scherg,et al.  Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference , 2005, Nature Neuroscience.

[148]  I. Winter The Neurophysiology of Pitch , 2005 .

[149]  William P. Shofner,et al.  Comparative Aspects of Pitch Perception , 2005 .

[150]  R. Fay,et al.  Pitch : neural coding and perception , 2005 .

[151]  Russell R. Pfeiffer,et al.  Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulation , 2004, Experimental Brain Research.

[152]  Louis D Braida,et al.  Functional role of auditory cortex in frequency processing and pitch perception. , 2002, Journal of neurophysiology.

[153]  R. Zatorre,et al.  Functional specificity in the right human auditory cortex for perceiving pitch direction. , 2000, Brain : a journal of neurology.

[154]  P. Cariani Temporal Coding of Periodicity Pitch in the Auditory System: An Overview , 1999, Neural plasticity.

[155]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[156]  J. Cynx SIMILARITIES IN ABSOLUTE AND RELATIVE PITCH PERCEPTION IN SONGBIRDS (STARLING AND ZEBRA FINCH) AND A NONSONGBIRD (PIGEON) , 1995 .

[157]  J. Smurzyński,et al.  Pitch identification and discrimination for complex tones with many harmonics , 1990 .

[158]  W. W. Clark,et al.  Detection of frequency and rate modulation by the chinchilla. , 1984, Journal of the Acoustical Society of America.

[159]  C. Woolsey,et al.  Auditory areas I, II, and Ep: cochlear representation, afferent paths and interconnections. , 1960, Bulletin of the Johns Hopkins Hospital.