Automated classification of brain tumours from short echo time in vivo MRS data using Gaussian Decomposition and Bayesian Neural Networks

Neuro-oncologists must ultimately rely on their acquired knowledge and accumulated experience to undertake the sensitive task of brain tumour diagnosis. This task strongly depends on indirect, non-invasive measurements, which are the source of valuable data in the form of signals and images. Expert radiologists should benefit from their use as part of an at least partially automated computer-based medical decision support system. This paper focuses on Magnetic Resonance Spectroscopy signal analysis and illustrates a method that combines Gaussian Decomposition, dimensionality reduction by Moving Window with Variance Analysis and classification using adaptively regularized Artificial Neural Networks. The method yields encouraging results in the task of binary classification of human brain tumours, even for tumour types that have seldom been analyzed from this viewpoint.

[1]  C Arús,et al.  Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single‐voxel 1H MRS , 2012, NMR in biomedicine.

[2]  Theodoros N. Arvanitis,et al.  Automated feature extraction for the classification of human in vivo13C NMR spectra using statistical pattern recognition and wavelets , 1996, Magnetic resonance in medicine.

[3]  Carles Arús,et al.  Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. , 2002, Radiology.

[4]  Osamu Sakai,et al.  Combined volumetric T1, T2 and secular-T2 quantitative MRI of the brain: age-related global changes (preliminary results). , 2006, Magnetic resonance imaging.

[5]  Lluís A. Belanche Muñoz,et al.  Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database , 2009, Neurocomputing.

[6]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[7]  Margarida Julià-Sapé,et al.  The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses , 2010, BMC Bioinformatics.

[8]  J. Suykens,et al.  Classification of brain tumours using short echo time 1H MR spectra. , 2004, Journal of magnetic resonance.

[9]  Francisco del Pozo,et al.  Diagnosis of brain tumours from magnetic resonance spectroscopy using wavelets and Neural Networks , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[10]  Julio J. Valdés,et al.  Nrc Publications Archive (nparc) Archives Des Publications Du Cnrc (nparc) Computational Intelligence Techniques Applied to Magnetic Resonance Spectroscopy Data of Human Brain Cancers Computational Intelligence Techniques Applied to Magnetic Resonance Spectroscopy Data of Human Brain Cancers * Compu , 2022 .

[11]  J P Cousins,et al.  Clinical MR spectroscopy: fundamentals, current applications, and future potential. , 1995, AJR. American journal of roentgenology.

[12]  N. J. Shah,et al.  Magnetic field dependence of the distribution of NMR relaxation times in the living human brain , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[13]  Enrique Romero,et al.  Frequency Selection for the Diagnostic Characterization of Human Brain Tumours , 2009, CCIA.

[14]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[15]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[16]  Paulo J. G. Lisboa,et al.  Discriminant Convex Non-negative Matrix Factorization for the classification of human brain tumours , 2013, Pattern Recognit. Lett..

[17]  U. Haud Gaussian decomposition of the Leiden/Dwingeloo survey. I. Decomposition algorithm , 2000 .

[18]  M. Julià-Sapé,et al.  A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.

[19]  Andy Devos Quantification and Classification of Magnetic Resonance Spectroscopy Data and Applications to Brain Tumour Recognition (Kwantificatie en classificatie van Magnetische Resonantie Spectroscopie data en toepassingen voor de patroonherkenning van hersentumoren) , 2005 .

[20]  Christophe Ludovic,et al.  Pattern Recognition Techniques for the Study of Magnetic Resonance Spectra of Brain Tumours , 2003 .

[21]  Margarida Julià-Sapé,et al.  SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system , 2010, BMC Bioinformatics.

[22]  W M Bovée,et al.  Improved quantification of in vivo1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting , 1990, Magnetic resonance in medicine.

[23]  W El-Deredy,et al.  Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection , 2003, Statistics in medicine.

[24]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[25]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[26]  G. Reifenberger,et al.  The WHO Classification of Tumors of the Nervous System , 2002, Journal of neuropathology and experimental neurology.

[27]  V. Govindaraju,et al.  Proton NMR chemical shifts and coupling constants for brain metabolites , 2000, NMR in biomedicine.

[28]  E. Melhem,et al.  Differentiation between Glioblastomas, Solitary Brain Metastases, and Primary Cerebral Lymphomas Using Diffusion Tensor and Dynamic Susceptibility Contrast-Enhanced MR Imaging , 2011, American Journal of Neuroradiology.

[29]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[30]  U. Haud Gaussian decomposition of Hi surveys V. Search for very cold clouds , 2010, 1001.4155.

[31]  Sabine Van Huffel,et al.  Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[32]  S. Mallat A wavelet tour of signal processing , 1998 .

[33]  Sabine Van Huffel,et al.  Brain tumor classification based on long echo proton MRS signals , 2004, Artif. Intell. Medicine.

[34]  Paulo J. G. Lisboa,et al.  Robust analysis of MRS brain tumour data using t-GTM , 2006, Neurocomputing.

[35]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[36]  Alfredo Vellido,et al.  Classification of human brain tumours from MRS data using Discrete Wavelet Transform and Bayesian Neural Networks , 2012, Expert Syst. Appl..

[37]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[38]  Lluís A. Belanche Muñoz,et al.  Feature and model selection with discriminatory visualization for diagnostic classification of brain tumors , 2010, Neurocomputing.

[39]  Christophe Ladroue,et al.  Independent component analysis for automated decomposition of in vivo magnetic resonance spectra , 2003, Magnetic resonance in medicine.

[40]  Alan S. Stern,et al.  NMR Data Processing , 1996 .