Self-Embeddings of Computable Trees
暂无分享,去创建一个
[1] Linda Jean Richter. Degrees of Structures , 1981, Journal of Symbolic Logic.
[2] Robert I. Soare,et al. Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.
[3] Eberhard Herrmann. Infinite Chains and Antichains in Computable Partial Orderings , 2001, J. Symb. Log..
[4] Steffen Lempp,et al. Computable categoricity of trees of finite height , 2005, Journal of Symbolic Logic.
[5] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[6] R. Soare. Recursively enumerable sets and degrees , 1987 .
[7] Harvey M. Friedman. Three Quantifier Sentences , 2003 .
[8] Ben Dushnik,et al. Concerning similarity transformations of linearly ordered sets , 1940 .
[9] E. Corominas,et al. On better quasi-ordering countable trees , 1985, Discret. Math..
[10] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[11] Rodney G. Downey,et al. The proof-theoretic strength of the Dushnik-Miller Theorem for countable linear orders , 1999 .
[12] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[13] Russell Miller. The computable dimension of trees of infinite height , 2005, Journal of Symbolic Logic.
[14] Rodney G. Downey,et al. On self-embeddings of computable linear orderings , 2006, Ann. Pure Appl. Log..
[15] David Ross. Tree self-embeddings , 1989 .