Striped order in AdS/CFT correspondence

We study the formation of inhomogeneous order in the Einstein-Maxwell-axion system, dual to a 2+1 dimensional field theory that exhibits a spontaneously generated current density, momentum density and modulated scalar operator. Below the critical temperature, the Reissner-Nordstrom-AdS black hole becomes unstable and stripes form in the bulk and on the boundary. The bulk geometry possesses striking geometrical features, including a modulated horizon that tends to pinch off as T -> 0. On a domain of fixed length, we find a second order phase transition to the striped solution in each of the grand canonical, canonical and microcanonical ensembles, with modulated charges that grow and saturate as we lower the temperature and descend into the inhomogeneous phase. For the black hole on an infinite domain, a similar second order transition occurs, and the width of the dominant stripe increases in the zero temperature limit.

[1]  G. Siopsis,et al.  Conductivity of strongly coupled striped superconductor , 2012, 1208.2964.

[2]  Benjamin Withers The moduli space of striped black branes , 2013, 1304.2011.

[3]  Benjamin Withers Black branes dual to striped phases , 2013, 1304.0129.

[4]  Aristomenis Donos Striped phases from holography , 2013, 1303.7211.

[5]  Sarah M. Harrison,et al.  Vortex lattices and crystalline geometries , 2013, 1303.4390.

[6]  G. Horowitz,et al.  General relativity and the cuprates , 2013, 1302.6586.

[7]  H. Ooguri,et al.  Spontaneous generation of angular momentum in holographic theories. , 2012, Physical review letters.

[8]  M. Rozali,et al.  Holographic stripes. , 2012, Physical review letters.

[9]  N. Jokela,et al.  Fluctuations and instabilities of a holographic metal , 2012, 1211.1381.

[10]  J. Erdmenger,et al.  Magnetic field induced lattice ground states from holography , 2012, 1210.6669.

[11]  H. Ooguri,et al.  Spatially Modulated Phase in Holographic Quark-Gluon Plasma , 2013 .

[12]  S. Kachru,et al.  Extremal horizons with reduced symmetry: hyperscaling violation, stripes, and a classification for the homogeneous case , 2012, 1212.1948.

[13]  M. Rozali Compressible matter at a holographic interface. , 2012, Physical review letters.

[14]  G. Horowitz,et al.  Further evidence for lattice-induced scaling , 2012, 1209.1098.

[15]  S. Hartnoll,et al.  Universal linear in temperature resistivity from black hole superradiance , 2012, 1208.4102.

[16]  N. Jokela,et al.  Magnetic effects in a holographic Fermi-like liquid , 2012, 1204.3914.

[17]  J. Gauntlett,et al.  Black holes dual to helical current phases , 2012, 1204.1734.

[18]  G. Horowitz,et al.  Optical conductivity with holographic lattices , 2012, 1204.0519.

[19]  J. Gauntlett,et al.  Helical superconducting black holes. , 2012, Physical review letters.

[20]  S. Sachdev What Can Gauge-Gravity Duality Teach Us about Condensed Matter Physics? , 2011, 1108.1197.

[21]  J. Gauntlett,et al.  Holographic helical superconductors , 2011, 1109.3866.

[22]  N. Jokela,et al.  Striped instability of a holographic Fermi-like liquid , 2011, 1106.3883.

[23]  J. Gauntlett,et al.  Holographic striped phases , 2011, 1106.2004.

[24]  H. Ooguri,et al.  Spatially modulated phase in the holographic description of quark-gluon plasma. , 2010, Physical review letters.

[25]  S. Papanikolaou,et al.  Striped holographic superconductor , 2010, 1010.1775.

[26]  H. Ooguri,et al.  Holographic endpoint of spatially modulated phase transition , 2010, 1007.3737.

[27]  H. Ooguri,et al.  Gravity Dual of Spatially Modulated Phase , 2009, 0911.0679.

[28]  J. McGreevy Holographic Duality with a View Toward Many-Body Physics , 2009, 0909.0518.

[29]  C. Herzog Lectures on holographic superfluidity and superconductivity , 2009, 0904.1975.

[30]  S. Hartnoll Lectures on holographic methods for condensed matter physics , 2009, 0903.3246.

[31]  M. Vojta Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity , 2009, 0901.3145.

[32]  V. J. Emery,et al.  Concepts in High Temperature Superconductivity , 2002, cond-mat/0206217.

[33]  E. Sorkin Nonuniform black strings in various dimensions , 2006, gr-qc/0608115.

[34]  T. Wiseman,et al.  Plasma balls in large-N gauge theories and localized black holes , 2005, hep-th/0507219.

[35]  Kostas Skenderis,et al.  Thermodynamics of Asymptotically Locally AdS Spacetimes , 2005, hep-th/0505190.

[36]  B. Kol,et al.  Black-brane instability in an arbitrary dimension , 2004, gr-qc/0407058.

[37]  Kostas Skenderis,et al.  AdS/CFT correspondence and geometry , 2004, hep-th/0404176.

[38]  E. Sorkin Critical dimension in the black-string phase transition. , 2004, Physical review letters.

[39]  Toby Wiseman Static axisymmetric vacuum solutions and non-uniform black strings , 2003 .

[40]  T. Wiseman Static axisymmetric vacuum solutions and non-uniform black strings , 2002, hep-th/0209051.

[41]  D. Son,et al.  On finite-density QCD at large Nc , 1999, hep-ph/9905448.

[42]  Gregory,et al.  Black strings and p-branes are unstable. , 1993, Physical review letters.

[43]  V. Rubakov,et al.  STANDING WAVE GROUND STATE IN HIGH DENSITY, ZERO TEMPERATURE QCD AT LARGE NC , 1992 .