Overview of fundamentals and applications of electrons, excitons and photons in confined structures

Abstract The advent of electron- and photon-confined structures has led to a wealth of novel physical phenomena and device applications. While the 1980s were devoted to 2D electronic quantum wells (QWs), the past decade has seen a flourish of 1D quantum wire (QWR) and 0D quantum dot (QD) studies. While remarkably sharp features were observed at the single QD level, fabrication of fluctuation-free ensembles of QDs remains a stumbling block for applications. On the other hand, more recently emerged photon-confined structures in the form of planar cavities, micropillars, photonic crystals have seen many achievements such as the Purcell effect, modification of light extraction efficiency, strong light–matter coupling. Advanced effects such as thresholdless lasers, squeezed photon generation, quantum condensation remain to be demonstrated. Although it might appear as a side effect, the interplay of electronic and photonic dimensionalities yields a profound insight on light–matter interaction.

[1]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[2]  K. Henneberger,et al.  Gain Mechanisms and Lasing in II–VI Compounds , 1997 .

[3]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1993 .

[4]  C. Weisbuch,et al.  Resonant Polariton Fluorescence in Gallium Arsenide , 1977 .

[5]  Ogawa,et al.  Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects. , 1991, Physical review. B, Condensed matter.

[6]  Ananth Dodabalapur,et al.  Organic light emitting diodes , 1997 .

[7]  Egeler,et al.  Electron relaxation in quantum dots by means of Auger processes. , 1992, Physical review. B, Condensed matter.

[8]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1994 .

[9]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[10]  Levon V. Asryan,et al.  Temperature dependence of the threshold current density of a quantum dot laser , 1998 .

[11]  J. Eberly,et al.  Cavity Quantum Electrodynamics , 1996 .

[12]  Stephan W Koch,et al.  Band‐edge nonlinearities in direct‐gap semiconductors and their application to optical bistability and optical computing , 1988 .

[13]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[14]  Alfred Forchel,et al.  Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots , 1996 .

[15]  Kenichi Iga,et al.  Spontaneous emission factor of a microcavity DBR surface-emitting laser , 1991 .

[16]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[17]  G. Bjork,et al.  On the spontaneous lifetime change in an ideal planar microcavity-transition from a mode continuum to quantized modes , 1994 .

[18]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[19]  K. Streubel,et al.  High brightness visible (660 nm) resonant-cavity light-emitting diode , 1998, IEEE Photonics Technology Letters.

[20]  Norris,et al.  Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. , 1993, Physical review. B, Condensed matter.

[21]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[22]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[23]  Luo,et al.  Excitonic gain and laser emission in ZnSe-based quantum wells. , 1992, Physical review letters.

[24]  Stephan W Koch,et al.  Microscopic theory of laser gain in semiconductor quantum wells , 1998 .

[25]  Henri Benisty,et al.  Confined Electrons and Photons , 1995 .

[26]  H. Giessen,et al.  Ultrafast energy relaxation in quantum dots. , 1996, Physical review. B, Condensed matter.

[27]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[28]  A. Campillo,et al.  Optical processes in microcavities , 1996 .

[29]  Sandip Tiwari,et al.  High efficiency and low threshold current strained V‐groove quantum‐wire lasers , 1994 .

[30]  Yamamoto,et al.  Direct creation of quantum well excitons by electron resonant tunneling. , 1995, Physical review letters.

[31]  Elias Burstein,et al.  Confined electrons and photons : new physics and applications , 1995 .

[32]  Egorov,et al.  Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. , 1996, Physical review. B, Condensed matter.

[33]  V. Savona,et al.  Time-resolved Rayleigh scattering of excitons: Evidence for level repulsion in a disordered system , 1999 .

[34]  Kam Y. Lau,et al.  Ultralow‐threshold graded‐index separate‐confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings , 1987 .

[35]  T. Waho,et al.  Inelastic scattering in slow-ion surface-channeling and surface Debye temperature , 1974 .

[36]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[37]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[38]  Deborah L. Sivco,et al.  Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940 nm , 1993 .

[39]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[40]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[41]  C. Weisbuch,et al.  Impurity Modes in One Dimensional Periodic Systems: The Transition from Photonic Band Gaps to Microcavities , 1993 .

[42]  Brunner,et al.  Photoluminescence from a single GaAs/AlGaAs quantum dot. , 1992, Physical review letters.

[43]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling , 1998 .

[44]  Rossi,et al.  Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures. , 1996, Physical review letters.

[45]  C. Weisbuch,et al.  Optical characterization of interface disorder in GaAs-Ga1-xAlxAs multi-quantum well structures , 1981 .

[46]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[47]  Piet Demeester,et al.  Recycling of guided mode light emission in planar microcavity light emitting diodes , 1997 .

[48]  Nakamura,et al.  Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses. , 1989, Physical review. B, Condensed matter.

[49]  C. Weisbuch,et al.  Quantum Semiconductor Structures: Fundamentals and Applications , 1991 .

[50]  Y. Toyozawa On the Dynamical Behavior of an Exciton , 1959 .

[51]  R. Dingle,et al.  Polariton Reflectance and Photoluminescence in High-Purity GaAs , 1973 .

[52]  P. Demeester,et al.  High efficiency planar microcavity LED's: comparison of design and experiment , 1995, IEEE Photonics Technology Letters.

[53]  West,et al.  Lasing from excitons in quantum wires. , 1993, Physical review letters.

[54]  W. N. Carr,et al.  Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode , 1966 .

[55]  W. Schleich,et al.  Fundamental Systems in Quantum Optics , 1995 .

[56]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[57]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[58]  West,et al.  Radiative lifetimes of excitons in quantum wires. , 1994, Physical review. B, Condensed matter.

[59]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[60]  Erich P. Ippen,et al.  Spontaneous emission rate alteration in optical waveguide structures , 1990 .

[61]  M. Sturge Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV , 1962 .

[62]  S. Koch,et al.  A comparison of lasing mechanisms in ZnSe and GaAs , 1995 .

[63]  Shuji Nakamura,et al.  III–V nitride based light-emitting devices , 1997 .

[64]  B. V. Shanabrook,et al.  Homogeneous Linewidths in the Optical Spectrum of a Single Gallium Arsenide Quantum Dot , 1996, Science.

[65]  K. West,et al.  Metamorphosis of a quantum wire into quantum dots , 1997, Nature.

[66]  F. Rossi,et al.  Shape-independent scaling of excitonic confinement in realistic quantum wires , 1997, cond-mat/9704061.

[67]  Hiroyuki Yokoyama,et al.  Spontaneous Emission and Laser Oscillation in Microcavities , 1995 .

[68]  Stanley,et al.  Measurement of cavity-polariton dispersion curve from angle resolved photoluminescence experiments. , 1994, Physical review letters.

[69]  S. Tiwari,et al.  Experimental comparison of strained quantum‐wire and quantum‐well laser characteristics , 1994 .

[70]  J. Shah Ultrafast spectroscopy of semiconductors and semiconductor nanostructures , 1996 .

[71]  Michel Krakowski,et al.  Threshold current of single quantum well lasers: The role of the confining layers , 1986 .

[72]  Marc Ilegems,et al.  Measurement of cavity polariton dispersion curve , 1994 .

[73]  Phonons in Semiconductor Nanostructures , 1993 .

[74]  T. Takagahara Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots , 1987 .

[75]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[76]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[77]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[78]  Hajime Shoji,et al.  Effect of phonon bottleneck on quantum-dot laser performance , 1997 .

[79]  Gerald B. Stringfellow,et al.  High brightness light emitting diodes , 1997 .

[80]  D. Bloch,et al.  Quantum Optics of Confined Systems , 1996 .

[81]  Fernando Ponce,et al.  High dislocation densities in high efficiency GaN‐based light‐emitting diodes , 1995 .

[82]  Henri Benisty,et al.  Organic and inorganic quantum wells in a microcavity: Frenkel-Wannier-Mott excitons hybridization and energy transformation , 1997 .

[83]  Jean-Michel Gérard,et al.  InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si , 1996 .

[84]  C. Piermarocchi,et al.  Photoluminescence decay times in strong-coupling semiconductor microcavities , 1996 .

[85]  S. G. Bishop,et al.  Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening , 1996, IEEE Photonics Technology Letters.

[86]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[87]  Rossi,et al.  Exciton binding energy in GaAs V-shaped quantum wires. , 1994, Physical review letters.

[88]  Stephan W Koch,et al.  Microscopic Theory of Excitonic Signatures in Semiconductor Photoluminescence , 1998 .

[89]  Jacobson,et al.  Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity. , 1993, Physical review letters.

[90]  Katzer,et al.  Enhanced radiative recombination of free excitons in GaAs quantum wells. , 1991, Physical review letters.

[91]  Karlsson,et al.  Definition of a laser threshold. , 1994, Physical review. A, Atomic, molecular, and optical physics.