On the tree with diameter 4 and maximal energy

The energy of a simple graph is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix. Jianping found the structure of trees which have maximal energy among all trees of diameter 4 whose centers are of degree t. This paper generalizes the result. We determine the structure of the general tree of diameter 4 and maximal energy.

[1]  Jing Ma,et al.  The Wiener Polarity Index of Graph Products , 2014, Ars Comb..

[2]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[3]  Ali Reza Ashrafi,et al.  Balaban Index of Dendrimers , 2013 .

[4]  Graph energy change due to edge grafting operations and its applications , 2010 .

[5]  Yongtang Shi,et al.  The Uniqueness of -Matrix Graph Invariants , 2014, PloS one.

[6]  Yongtang Shi,et al.  Complete solution to a problem on the maximal energy of unicyclic bipartite graphs , 2010, 1010.6129.

[7]  C. A. Coulson,et al.  On the calculation of the energy in unsaturated hydrocarbon molecules , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Amir Khosravanirad,et al.  A Lower Bound for Laplacian Estrada Index of a Graph , 2013 .

[9]  Ivan Gutman,et al.  Acyclic systems with extremal Hückel π-electron energy , 1977 .

[10]  C. Coulson,et al.  591. Conjugation across a single bond , 1949 .

[11]  Yongtang Shi,et al.  Extremal Matching Energy of Bicyclic Graphs , 2013 .

[12]  Jianping Ou On acyclic molecular graphs with maximal Hosoya index, energy, and short diameter , 2008 .

[13]  Yongtang Shi,et al.  On the maximal energy tree with two maximum degree vertices , 2011, 1103.3842.

[14]  Xueliang Li,et al.  Note on unicyclic graphs with given number of pendent vertices and minimal energy , 2007 .

[15]  Andriantiana Eod More Trees with Large Energy , 2012 .

[16]  Sezer Sorgun On Randic Energy of Graphs , 2014 .

[17]  Yongtang Shi,et al.  Algorithm sa nd Extre mal Problem on Wiener Polarity Index , 2009 .

[18]  Saeid Alikhani,et al.  HARARY INDEX OF DENDRIMER NANOSTAR NS2[N] , 2014 .

[19]  Ali Iranmanesh,et al.  Harary Index of Some Nano-Structures , 2014 .

[20]  Bo Zhou,et al.  On minimal energies of trees of a prescribed diameter , 2006 .

[21]  D. Bozkurt,et al.  On Incidence Energy , 2014 .

[22]  Matthias Dehmer,et al.  The Discrimination Power of Molecular Identification Numbers Revisited , 2013 .

[23]  Indra Rajasingh,et al.  Computing Szeged Index of Certain Nanosheets Using Partition Technique , 2014 .

[24]  Ante Graovac,et al.  An Upper Bound for Energy of Matrices Associated to an Infinite Class of Fullerenes , 2014 .

[25]  Ivan Gutman An Exceptional Property of First Zagreb Index , 2014 .

[26]  Lihua Feng,et al.  On Connective Eccentricity Index of Graphs 1 , 2013 .

[27]  Yongtang Shi,et al.  On a Conjecture about Tricyclic Graphs with Maximal Energy , 2013, 1312.0204.

[28]  Xueliang Li,et al.  Complete solution to a conjecture on the maximal energy of unicyclic graphs , 2010, Eur. J. Comb..

[29]  Hong-Hai Li,et al.  Graphs with Extremal Matching Energies and Prescribed Parameters , 2014 .

[30]  Yongtang Shi,et al.  Solution to a conjecture on the maximal energy of bipartite bicyclic graphs , 2010, 1101.0058.

[31]  Hong Lin Extremal Wiener Index of Trees with Given Number of Vertices of Even Degree , 2014 .

[32]  Bo Zhou,et al.  On Laplacian Energy , 2013 .

[33]  Weigen Yan,et al.  On the minimal energy of trees with a given diameter , 2005, Appl. Math. Lett..

[34]  On a Conjecture on the Tree with Fourth Greatest Energy , 2010 .

[35]  Hong Lin On the Wiener Index of Trees with Given Number of Branching Vertices , 2014 .

[36]  Matthias Dehmer,et al.  On Sphere-Regular Graphs and the Extremality of Information-Theoretic Network Measures , 2013 .

[37]  Yongtang Shi,et al.  Complete Solution to a Conjecture on the Fourth Maximal Energy Tree , 2011 .

[38]  José Luis Palacios,et al.  A Resistive Upper Bound for the ABC Index , 2014 .

[39]  Xueliang Li,et al.  Solutions to Unsolved Problems on the Minimal Energies of Two Classes of Graphs , 2011 .

[40]  Mohammad Bagher Ahmadi,et al.  Kragujevac Trees with Minimal Atom{Bond Connectivity Index , 2014 .

[41]  Yaoping Hou,et al.  Unicyclic graphs with maximal energy , 2002 .

[42]  Kexiang Xu,et al.  Maximizing the Zagreb indices of (n;m)-graphs 1 , 2014 .

[43]  Kexiang Xu,et al.  A Survey on Graphs Extremal with Respect to Distance-Based Topological Indices , 2014 .

[44]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[45]  Yongtang Shi,et al.  The Maximal Matching Energy of Tricyclic Graphs , 2014, 1409.2038.

[46]  I. Gutman,et al.  Note on the HOMO-LUMO Index of Graphs ∗ , 2013 .

[47]  Xueliang Li,et al.  Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index , 2007, Discret. Appl. Math..

[48]  R. Balakrishnan The energy of a graph , 2004 .

[49]  Bo Zhou,et al.  Minimal energy of unicyclic graphs of a given diameter , 2008 .

[50]  Dragan Stevanović,et al.  Further Properties of the Second Zagreb Index , 2014 .

[51]  Xuechao Li,et al.  On tricyclic graphs of a given diameter with minimal energy , 2009 .