Microbial electrosynthesis — revisiting the electrical route for microbial production

[1]  Ludo Diels,et al.  Use of novel permeable membrane and air cathodes in acetate microbial fuel cells , 2010 .

[2]  G. Andersen,et al.  Bacterial community structure corresponds to performance during cathodic nitrate reduction , 2010, The ISME Journal.

[3]  A. Bergel,et al.  Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa , 2010 .

[4]  Derek R. Lovley,et al.  Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds , 2010, mBio.

[5]  Willy Verstraete,et al.  Bioelectrochemical perchlorate reduction in a microbial fuel cell. , 2010, Environmental science & technology.

[6]  Shelley Brown,et al.  High current generation coupled to caustic production using a lamellar bioelectrochemical system. , 2010, Environmental science & technology.

[7]  Mauro Majone,et al.  Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. , 2010, Bioresource technology.

[8]  Kelly P. Nevin,et al.  Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. , 2010, Environmental Microbiology Reports.

[9]  Korneel Rabaey,et al.  Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. , 2010, Environmental science & technology.

[10]  F. Aulenta,et al.  Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. , 2010, Biosensors & bioelectronics.

[11]  S. Freguia,et al.  Microbial fuel cells operating on mixed fatty acids. , 2010, Bioresource technology.

[12]  Kenji Kano,et al.  Electron transfer pathways in microbial oxygen biocathodes , 2010 .

[13]  Hubertus V. M. Hamelers,et al.  Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. , 2010, Environmental science & technology.

[14]  Bruce E. Rittmann,et al.  A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. , 2010, FEMS microbiology reviews.

[15]  Bruce E. Logan,et al.  Scaling up microbial fuel cells and other bioelectrochemical systems , 2010, Applied Microbiology and Biotechnology.

[16]  Paul C Mills,et al.  Characterization of an electron conduit between bacteria and the extracellular environment , 2009, Proceedings of the National Academy of Sciences.

[17]  Jurg Keller,et al.  Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application , 2009 .

[18]  Jurg Keller,et al.  Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system , 2009 .

[19]  Jonathan A. Goler,et al.  Chemical synthesis using synthetic biology. , 2009, Current opinion in biotechnology.

[20]  Willy Verstraete,et al.  Revival of the biological sunlight‐to‐biogas energy conversion system , 2009, Biotechnology and bioengineering.

[21]  Zhiguo Yuan,et al.  Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. , 2009, Environmental science & technology.

[22]  C. Field,et al.  Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol , 2009, Science.

[23]  Byoung-Chan Kim,et al.  Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells , 2009, PloS one.

[24]  Peng Liang,et al.  A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction , 2009 .

[25]  Zhiguo Yuan,et al.  Role of sulfur during acetate oxidation in biological anodes. , 2009, Environmental science & technology.

[26]  B. Logan Exoelectrogenic bacteria that power microbial fuel cells , 2009, Nature Reviews Microbiology.

[27]  J. Ni,et al.  Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell , 2009 .

[28]  E. E. L O G A N,et al.  Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis , 2009 .

[29]  D. Lovley The microbe electric: conversion of organic matter to electricity. , 2008, Current opinion in biotechnology.

[30]  Eoin L. Brodie,et al.  A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells , 2008, The ISME Journal.

[31]  Hyung-Sool Lee,et al.  Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. , 2008, Environmental science & technology.

[32]  H. Hamelers,et al.  Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. , 2008, Water research.

[33]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[34]  C. Buisman,et al.  Towards practical implementation of bioelectrochemical wastewater treatment. , 2008, Trends in biotechnology.

[35]  Bruce E Rittmann,et al.  Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria , 2008, Biotechnology and bioengineering.

[36]  Derek R. Lovley,et al.  Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyi , 2008, Applied and Environmental Microbiology.

[37]  Zhiguo Yuan,et al.  Microbial fuel cells for simultaneous carbon and nitrogen removal. , 2008, Water research.

[38]  Y. Zuo,et al.  Electricity generation by Rhodopseudomonas palustris DX-1. , 2008, Environmental science & technology.

[39]  Derek R. Lovley,et al.  Genome-Wide Gene Expression Patterns and Growth Requirements Suggest that Pelobacter carbinolicus Reduces Fe(III) Indirectly via Sulfide Production , 2008, Applied and Environmental Microbiology.

[40]  J. C. Thrash,et al.  Review: Direct and indirect electrical stimulation of microbial metabolism. , 2008, Environmental science & technology.

[41]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[42]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[43]  Zhiguo Yuan,et al.  Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. , 2008, Water research.

[44]  W Verstraete,et al.  Combining biocatalyzed electrolysis with anaerobic digestion. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[45]  S. Freguia,et al.  Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells , 2008, The ISME Journal.

[46]  S H A O A N C H E N G, † H U B E R T U,et al.  Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter , 2008 .

[47]  F. Aulenta,et al.  Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system , 2008 .

[48]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[49]  Jurg Keller,et al.  Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells , 2007 .

[50]  Zhongtang Yu,et al.  Electricity generation from cellulose by rumen microorganisms in microbial fuel cells , 2007, Biotechnology and bioengineering.

[51]  Willy Verstraete,et al.  Biological denitrification in microbial fuel cells. , 2007, Environmental science & technology.

[52]  B. Logan,et al.  Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. , 2007, Environmental science & technology.

[53]  J. C. Thrash,et al.  Electrochemical stimulation of microbial perchlorate reduction. , 2007, Environmental science & technology.

[54]  Bruce E. Logan,et al.  AMMONIA TREATMENT OF CARBON CLOTH ANODES TO ENHANCE POWER GENERATION OF MICROBIAL FUEL CELLS , 2007 .

[55]  F. Aulenta,et al.  Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. , 2007, Environmental science & technology.

[56]  H. May,et al.  Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2 , 2007, Applied Microbiology and Biotechnology.

[57]  Alptekin Aksan,et al.  Painting and Printing Living Bacteria: Engineering Nanoporous Biocatalytic Coatings to Preserve Microbial Viability and Intensify Reactivity , 2007, Biotechnology progress.

[58]  Willy Verstraete,et al.  Microbial ecology meets electrochemistry: electricity-driven and driving communities , 2007, The ISME Journal.

[59]  J. N. B U I S M A N,et al.  Hydrogen Production with a Microbial Biocathode , 2007 .

[60]  D. Lovley Bug juice: harvesting electricity with microorganisms , 2006, Nature Reviews Microbiology.

[61]  Derek R Lovley,et al.  Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. , 2006, Environmental microbiology.

[62]  H. Hamelers,et al.  Principle and perspectives of hydrogen production through biocatalyzed electrolysis , 2006 .

[63]  H. Hamelers,et al.  Effects of membrane cation transport on pH and microbial fuel cell performance. , 2006, Environmental science & technology.

[64]  Derek R. Lovley,et al.  Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells , 2006, Applied and Environmental Microbiology.

[65]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  D. Lowy,et al.  Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. , 2006, Biosensors & bioelectronics.

[67]  Derek R Lovley,et al.  Remediation and recovery of uranium from contaminated subsurface environments with electrodes. , 2005, Environmental science & technology.

[68]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[69]  W. Verstraete,et al.  Microbial phenazine production enhances electron transfer in biofuel cells. , 2005, Environmental science & technology.

[70]  Uwe Schröder,et al.  Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell , 2005, Applied Microbiology and Biotechnology.

[71]  Byung Hong Kim,et al.  Electron flow shift inClostridiumacetobutylicum fermentation by electrochemically introduced reducing equivalent , 1988, Biotechnology Letters.

[72]  Bernhard Schink,et al.  Ferrihydrite-Dependent Growth of Sulfurospirillum deleyianum through Electron Transfer via Sulfur Cycling , 2004, Applied and Environmental Microbiology.

[73]  L. T. Angenent,et al.  Production of bioenergy and biochemicals from industrial and agricultural wastewater. , 2004, Trends in biotechnology.

[74]  W. Verstraete,et al.  Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer , 2004, Applied and Environmental Microbiology.

[75]  Derek R Lovley,et al.  Graphite electrodes as electron donors for anaerobic respiration. , 2004, Environmental microbiology.

[76]  Byung Hong Kim,et al.  Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell , 2004, Applied Microbiology and Biotechnology.

[77]  D. R. Bond,et al.  Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes , 2004, Applied and Environmental Microbiology.

[78]  G. Goma,et al.  Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition , 1994, Applied Microbiology and Biotechnology.

[79]  G. Goma,et al.  Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier , 1994, Biotechnology Letters.

[80]  W. Habermann,et al.  Biological fuel cells with sulphide storage capacity , 1991, Applied Microbiology and Biotechnology.

[81]  U. Schröder,et al.  A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. , 2003, Angewandte Chemie.

[82]  G. Gil,et al.  Operational parameters affecting the performannce of a mediator-less microbial fuel cell. , 2003, Biosensors & bioelectronics.

[83]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[84]  D. Lowy,et al.  Harnessing microbially generated power on the seafloor , 2002, Nature Biotechnology.

[85]  M. Chartrain,et al.  Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol , 2001, Applied Microbiology and Biotechnology.

[86]  J. Andrade,et al.  Regulation of Carbon and Electron Flow inClostridium butyricum VPI 3266 Grown on Glucose-Glycerol Mixtures , 2001, Journal of bacteriology.

[87]  Kelly P. Nevin,et al.  Potential for Nonenzymeatic Reduction of Fe(III) vio Electron Shuttling in Subsurface Sediments , 2000 .

[88]  D. Park,et al.  Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore , 2000, Applied and Environmental Microbiology.

[89]  Yusuf Chisti Bioprocess technology: one stop shopping Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis, and Bioseparation , 1999 .

[90]  J. Zeikus,et al.  Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production , 1999, Applied and Environmental Microbiology.

[91]  R. Conrad,et al.  Transient Production of Formate During Chemolithotrophic Growth of Anaerobic Microorganisms on Hydrogen , 1999, Current Microbiology.

[92]  J. Zeikus,et al.  Utilization of Electrically Reduced Neutral Red byActinobacillus succinogenes: Physiological Function of Neutral Red in Membrane-Driven Fumarate Reduction and Energy Conservation , 1999, Journal of bacteriology.

[93]  D C White,et al.  Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. , 1999, International journal of systematic bacteriology.

[94]  Tatsuo Yagishita,et al.  Photosynthetic bio-fuel cells using cyanobacteria , 1996 .

[95]  H. Simon,et al.  Artificial Electron Carriers for Preparative Biocatalytic Redox Reactions Forming Reversibly Carbon Hydrogen Bonds with Enzymes Present in Strict or Facultative Anaerobes , 1995 .

[96]  D. Lovley,et al.  Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism , 1994, Applied and environmental microbiology.

[97]  Y. Sakakibara,et al.  Electric prompting and control of denitrification. , 1993, Biotechnology and bioengineering.

[98]  A. Ishizaki,et al.  Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T , 1991 .

[99]  Bernhard Schink,et al.  Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System , 1990, Applied and environmental microbiology.

[100]  I. Berezin Bioelectrocatalysis , 1987 .

[101]  G. Patel,et al.  Ammonia toxicity in pure cultures of methanogenic bacteria , 1986 .

[102]  A. M. Lithgow,et al.  Interception of the electron-transport chain in bacteria with hydrophilic redox mediators. I: Selective improvement of the performance of biofuel cells with 2,6-disulphonated thionine as mediator , 1986 .

[103]  G. Gottschalk,et al.  NOTES: Revival of the Name Clostridium aceticum , 1981 .

[104]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[105]  M. Iwahara,et al.  Determination of electro-energizing conditions for L-glutamic acid fermentation , 1979 .

[106]  Masayoshi Iwahara,et al.  Application of Electro-energizing Method to l-Glutamic Acid Fermentation , 1979 .

[107]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[108]  W. Orme-Johnson,et al.  Oxidation-reduction properties of several low potential iron-sulfur proteins and of methylviologen. , 1976, Biochemistry.

[109]  R. Berk,et al.  BIOELECTROCHEMICAL ENERGY CONVERSION. , 1964, Applied microbiology.

[110]  J. Davis,et al.  Preliminary Experiments on a Microbial Fuel Cell , 1962, Science.

[111]  A. N N E M I E K T E R H E I J N E,et al.  A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells† , 2022 .

[112]  E. E. L O G A N,et al.  Electrochemically Assisted Microbial Production of Hydrogen from Acetate , 2022 .

[113]  E. E. L O G A N,et al.  Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell , 2022 .

[114]  E. E. L O G A N Microbial Fuel Cells : Methodology and Technology † , 2022 .