A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus.

[1]  J. Sodroski,et al.  Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. , 2007, Virology.

[2]  D. Trono,et al.  Interfering Residues Narrow the Spectrum of MLV Restriction by Human TRIM5α , 2007, PLoS pathogens.

[3]  J. Sodroski,et al.  Modulation of Retroviral Restriction and Proteasome Inhibitor-Resistant Turnover by Changes in the TRIM5α B-Box 2 Domain , 2007, Journal of Virology.

[4]  J. Guatelli,et al.  Evidence against a direct antiviral activity of the proteasome during the early steps of HIV-1 replication. , 2007, Virology.

[5]  J. Sodroski,et al.  The Human TRIM5α Restriction Factor Mediates Accelerated Uncoating of the N-Tropic Murine Leukemia Virus Capsid , 2006, Journal of Virology.

[6]  A. Engelman,et al.  Proteasome Inhibition Reveals that a Functional Preintegration Complex Intermediate Can Be Generated during Restriction by Diverse TRIM5 Proteins , 2006, Journal of Virology.

[7]  M. Yap,et al.  All Three Variable Regions of the TRIM5α B30.2 Domain Can Contribute to the Specificity of Retrovirus Restriction , 2006, Journal of Virology.

[8]  A. Engelman,et al.  Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. , 2006, Virology.

[9]  Joseph Sodroski,et al.  Removal of Arginine 332 Allows Human TRIM5α To Bind Human Immunodeficiency Virus Capsids and To Restrict Infection , 2006, Journal of Virology.

[10]  J. Sodroski,et al.  Two Surface-Exposed Elements of the B30.2/SPRY Domain as Potency Determinants of N-Tropic Murine Leukemia Virus Restriction by Human TRIM5α , 2006, Journal of Virology.

[11]  T. Hope,et al.  Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Towers,et al.  Differential Restriction of Human Immunodeficiency Virus Type 2 and Simian Immunodeficiency Virus SIVmac by TRIM5α Alleles , 2005, Journal of Virology.

[14]  J. Sodroski,et al.  The B30.2(SPRY) Domain of the Retroviral Restriction Factor TRIM5α Exhibits Lineage-Specific Length and Sequence Variation in Primates , 2005, Journal of Virology.

[15]  J. Sodroski,et al.  Retrovirus Restriction by TRIM5α Variants from Old World and New World Primates , 2005, Journal of Virology.

[16]  J. Sodroski,et al.  Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction , 2005, Journal of Virology.

[17]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jonathan P. Stoye,et al.  A Single Amino Acid Change in the SPRY Domain of Human Trim5α Leads to HIV-1 Restriction , 2005, Current Biology.

[19]  J. Sodroski,et al.  TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Towers,et al.  The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Yang,et al.  Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[23]  F. Diaz-Griffero,et al.  Endocytosis Is a Critical Step in Entry of Subgroup B Avian Leukosis Viruses , 2002, Journal of Virology.

[24]  J. Garcia,et al.  Inhibition of Endosomal/Lysosomal Degradation Increases the Infectivity of Human Immunodeficiency Virus , 2002, Journal of Virology.

[25]  G. Lucero,et al.  A dominant block to HIV-1 replication at reverse transcription in simian cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Bieniasz,et al.  Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. Plavec,et al.  Construction and Molecular Analysis of Gene Transfer Systems Derived from Bovine Immunodeficiency Virus , 2001, Journal of Virology.

[28]  Y. Takeuchi,et al.  A conserved mechanism of retrovirus restriction in mammals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Towers,et al.  Use of a Transient Assay for Studying the Genetic Determinants of Fv1 Restriction , 2000, Journal of Virology.

[30]  J. Sodroski,et al.  Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection , 1999, Journal of Virology.

[31]  J. Olsen Gene transfer vectors derived from equine infectious anemia virus , 1998, Gene Therapy.

[32]  Bertrand Friguet,et al.  Antiviral Activity of the Proteasome on Incoming Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.